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Abstract 

U.S. residential thermostats control approximately 9% of the 
nation’s energy use. Many building codes now require 
programmable thermostats (PTs) because of their assumed 
energy savings. However, several recent field studies have 
shown no significant savings or even higher energy use in 
households using PTs compared to those using non-PTs. 

These studies point to usability problems that lead to 
incorrect use and wasted energy. However, the lack of clear, 
consistent metrics has hampered the acceptance of usability 
concerns by thermostat manufacturers. Thus there is a need 
for metrics specific to PTs that manufacturers can use to 
evaluate their products. 

In this paper, we report on the results of a usability study 
conducted on five commercially available PTs and the 
development of four new metrics suitable for use in 
evaluating thermostat usability. Our study confirmed 
usability deficits in the current generation of PTs and showed 
the metrics are correlated with each other as well as 
agreeing with the qualitative results of the study. 
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Introduction 

Thermostats have a considerable effect on energy use throughout the U.S. Research on 
programmable thermostats (PTs), in particular, points to the need for careful and consistent 
user interface design to realize energy savings in the U.S. (Meier et al., 2010 ). Recent studies 
estimate that U.S. residential thermostats control 9% of the nation’s energy use (Peffer, 2011). 

However, usability issues with modern PT design are leading to errors in operation and wasted 
energy, with a resulting effect on national energy consumption. 

The EnergyStar™ endorsement program for PTs, which had been in place since 1995, was 
recently discontinued in December 2009 based on these and other results; EnergyStar™ is 

currently developing usability guidelines for PTs. A key issue in the establishment of these 
guidelines is the development of a means of measuring usability in thermostats that produces a 
single number that consumers can use to reliably and repeatedly compare device usability. 

We conducted a usability study on five commercially-available residential programmable 

thermostat interfaces (three touchscreen, one Web, and one button-based), evaluating device 
usability and effectiveness. Our goal was to devise metrics to evaluate the devices’ usability and 
the users’ effectiveness at performing common thermostat tasks such as setting heating 
temperatures and programming weekly schedules. We developed, computed, and tested four 
novel metrics appropriate to thermostats and similar devices: Time & Success, Path Length, 
Button Mash, and Confusion. We conducted a statistical evaluation of these metrics and a 
comparison to standard usability metrics, including the efficiency metric specified by the 
Common Industry Format for Usability Test Reports (National Institute for Standards and 
Technology [NIST], 2001), the ratio of the task completion rate to the mean time per task, and 
Sauro and Kindlund’s (2005) Single Usability Metric (SUM). 

We show that all metrics correlated with each other and corresponded with qualitative findings. 
Finally, we compared the new metrics with standard industry metrics.  

One drawback of existing metrics is that many are not normalized to an absolute scale, but vary 
based on factors such as the maximum time taken by a user to perform a task. By applying the 
logistic function (Verhulst, 1838), our metrics were all normalized to the scale 0-1 and thus 
provided an absolute rather than a relative reference. Additionally, our four metrics offer 
manufacturers and standards organizations several options to compare device usability with a 
high degree of statistical significance. 

We evaluated the metrics with a formal usability study conducted on five programmable 
thermostats (three touchscreen, one Web, and one-button based) with 31 participants and 295 
trials involving five separate tasks. 

In our usability test, we found that several of the PT interfaces were complicated and difficult for 
users to understand, leading to frustrations and major barriers for completing the tasks. Our 
metrics were able to clearly and objectively distinguish between more usable and less usable PT 
interfaces. 

This paper reports the results of one of the few formal usability studies ever conducted on PTs, 
as well as the development and evaluation of four novel usability metrics specific to 
thermostats, appliances, and similar devices. These metrics could be applied to any user 
interface on a small screen with a relatively small number of buttons or a touchscreen. 

Programmable Thermostats 
Modern programmable thermostats (PTs) can be scheduled to automatically adjust the indoor 
temperature for heating or cooling during occupied hours as well as unoccupied or sleeping 
hours. The adoption of PTs has been strongly supported by the U.S. Department of Energy 
(DOE), the U.S. Environmental Protection Agency (EPA), and the California Energy Commission 

(CEC)1. The DOE estimated the average homeowner can save 10% on heating and cooling costs 
by using a PT to reduce heating and cooling during the night or periods when the house is 
unoccupied (U.S. Department of Energy [DOE], 2011). The EPA claims homeowners could save 

                                                 
1
 The California Building Standards Code has required the installation of a setback or 

programmable thermostat in new and renovated residential construction since 1978. 



228 

Journal of Usability Studies Vol. 6, Issue 4, August 2011 

about $180 a year with a PT (2009). These predictions are qualified with terms like “effectively 
used” or “properly setting and maintaining those settings.” However, EPA’s EnergyStar™ 
program for PTs, which had been in place since 1995, was recently discontinued in December 
2009. One of the reasons for this decision is that several recent field studies have shown no 
significant savings in households using PTs compared to households using non-programmable 
thermostats; indeed, some studies even showed that homes with PTs used more energy than 

those relying on manual thermostats (Cross & Judd, 1997; Haiad, Peterson, Reeves, & Hirsch, 
2004; Nevius, & Pigg, 2000; Shipworth et al., 2010).  

There is increasing evidence that many people do not operate PTs in an optimal manner, 
leading to unnecessarily high heating and cooling energy use. The user interfaces of many 

thermostats appear to be a major cause of confusion and errors leading to incorrect settings, 
failure to override programs, and failure to return to regular schedules after exceptions. Several 
surveys have shown that approximately half of installed PTs in the U.S. are in “hold” mode, 
which disables the programmed schedule (California Energy Commission [CEC], 2004; Decision 
Analyst, 2008). While some studies suggest part of the problem lies in misconceptions about 
energy in general and how thermostats work in particular (Rathouse & Young, 2004), many 
reveal that people find PTs difficult to program and to understand (Boait, & Rylatt, 2010; 
Consumer Reports, 2011; Critchleya, Gilbertsona, Grimsleya, Greena, & Group, 2007; 
Karjalainen & Koistinen, 2007; Meier et al., 2010; Nevius, & Pigg, 2000). 

Most of these studies, however, are qualitative; little quantitative information is available on 
how people interact with these temperature and environmental controls. To our knowledge, the 
only comparative usability study on commercially available PTs was conducted by Consumer 
Reports in 2007 (Consumer Reports, 2011)2. Twenty-five different thermostats were lab-tested 
to assess their energy performance and their usability. As a result, PTs were ranked according 
to these criteria, and a series of problems with using thermostats were highlighted. Consumer 
Reports does not explicitly state what parameters were considered to assess thermostat 
usability, and it does not appear that quantitative tests were performed. 

Manufacturers of PTs have traditionally preferred prescriptive guidelines to a formal usability 
testing process. One concern is that such usability evaluations may be overly subjective. In 
order to address this concern, we developed and tested a set of four consistent, normalized 
metrics specifically designed for devices such as PTs. 

Related Work 

While there are numerous models to measure and benchmark usability (Tullis & Albert, 2008), 

there has been little research on whether these metrics can be effectively applied to 
programmable thermostats and appliances or similar types of embedded devices (computing 
systems designed to perform only a specific dedicated task). 

Babiker, Fujihara, and Boyle (1991) calculated a usability metric that combined objective and 
subjective measures, yet this metric was specific to hypertext systems. 

Smith (1996) derived more robust metrics for measuring efficiency, confidence, and “lostness” 
(disorientation in an information space) of users of hypertext systems. These metrics offered 

several ratios comparing the number of different nodes (pages) necessary to complete a task to 
the actual number of nodes the user accessed. Such ratios, while helpful in normalizing the 
metrics, possess challenges when applied to thermostats or other embedded devices. Most 
notably, distinguishing different nodes does not translate easily to systems where the same 
functions might have different meanings depending on the state of the device. 

Otter and Johnson (2000) built upon Smith’s work by adding link weightings to create what they 
depict as a more accurate hypertext lostness metric. These weightings are specific to the nature 
of hypertext and again rely on the different node paths. 

More recently, Sauro and Kindlund (2005) devised a single summated usability metric (SUM) 
that combined objective and subjective metrics based on the ISO/ANSI dimensions of 
effectiveness, efficiency, and satisfaction to form a single score. Testing of this metric was done 

                                                 
2
 While PT manufacturers often state that they perform usability tests for their products, they do 

not disclose results because they consider the user interface a key marketing feature. 
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across several Windows and Web-based platforms, yet was not extended to other devices. The 
authors did note that their tests were domain specific and that there were possible limitations of 
the metric when applied to other interfaces or hardware (Sauro & Kindlund, 2005). 

Murphy (1998) made necessary distinctions between usability considerations for embedded user 
interfaces and desktop applications. He noted that the embedded interface functions as a tool 
with specific ends and that the interface was vying for limited and diverse user attention spans. 

The limited work that does reference the usability of embedded devices focuses on prescriptive 
design principles. Such principles include display size and touchscreen affordances (Murphy, 
2001). While prescriptive evaluation methods are a helpful start for the designers of embedded 
systems, they can also stifle creative processes and these principles must continually be 
modified to keep pace with ever changing technology. 

Given the state of the art of embedded system usability, we determined that there was a need 
for metrics specific to thermostats and similar devices, and thus designed and conducted a 
formal usability study on PTs to evaluate such metrics. 

Methods 

The thermostat usability study consisted of 31 participants (9 female, 22 male), ranging in age 
from 18 to 65. The primary method of recruitment was through online classified postings to 
sections for “creative gigs” and “labor gigs” in the San Francisco Bay area. Twenty-nine 
participants were recruited from this post while two were recruited from a similar posting to a 
university email list. All participants were given a financial incentive for taking part in the study. 

While participants were not screened to be representative of the United States demographic 
population, the recruitment postings did produce a range of participants from varied 
occupations and backgrounds including construction workers, business managers, non-profit 
staff, maintenance workers, and students. Any participants who worked in the design or 
manufacturing of thermostats were screened out of the study. Participants were asked to rate 
their previous experience with programmable thermostats. Seventeen people reported their 
experience level with programmable thermostats as “low,” eight as “moderate,” and five 
reported having “no experience with programmable thermostats” (one participant gave no 
response).  

We tested five thermostat interfaces: three primarily touchscreen thermostats, one button-
based, and one Web-based thermostat (Table 1). These devices were selected to represent a 
range of commercially-available devices and prices. 

Table 1. Description of Thermostats Tested 

Device Type Description 

Button-based (BTN) Buttons/ 
switches 

Button-based programming, 
full cover over device, user 
instructions on cover, 7-day 
programming 

Hybrid (HYB) Buttons with touchscreen 

Hybrid of touchscreen (primary 
programming) and buttons 
(heating and cooling controls), 
7-day programming, ability to 
view past energy usage 

Smart (SMT) Smart with touchscreen  

Smart WiFi enabled device, 
full-color LCD touchscreen, 7-
day programming, quick save 
function 

Touchscreen (TCH) Touchscreen 
Touchscreen with black/white 
display, 7-day programming 

Web-based (WEB) Web portal 
Web platform; 7-day 
programming; synched with 
wall device. 
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The experimental design included both between-subjects and within-subjects variables. We 
identified five tasks that represented fundamental residential PT use cases in daily life. 

Task Description 
We developed a list of five tasks reflecting the important functionalities of PTs. These tasks were 
also chosen in consideration of their effect on residential energy efficiency. 

Set Heat—Task 1 

In this task users were asked to imagine it was winter and that they would like to set their 
thermostat to HEAT mode. The HEAT-OFF switch is a common control found in typical 
thermostats for at least the past 60 years. The setting was OFF at the start of the task. 

Time & Day—Task 2 

In this task users were asked to set the thermostat to the current day and time. The time 
settings were programmed to Monday at 12:00 a.m. for the start of the task. This task was not 

performed on the WEB thermostat because time settings could not be modified from the Web 
portal. Also, setting the day was excluded for the TCH device because this adjustment could 
only be performed with a settings code provided in the manual. 

Current Settings—Task 3 

In this task users were asked to identify and read aloud the temperature that the thermostat 
was set to reach at that current time. 

Future Settings—Task 4 

In this task users were expected to determine the temperature setting for a future period 
(Thursday at 9:00 p.m.) and to read this temperature aloud. They were specifically told that 
they did not need to change any of the temperature program settings but only identify the 
temperature already programmed. 

Vacation/Hold—Task 5 

In this task users were asked to imagine they were going on a five-day trip in the winter and 
needed to set their thermostat to maintain the same temperature during the time they were 
away. As long as the temperature was consistent for the five days, there was no additional 
value placed on the methods for which this task was achieved or the temperature selected. 

Experimental Design 
The thermostat interfaces (except WEB) were mounted on a wooden platform approximately 1.5 
meters from the floor. Each participant performed the same five tasks on two of the five 
thermostat interfaces (Table 2). The interface order was randomized for each subject to account 
for possible learning effects, and all permutations were tested. In total 12 to 13 subjects 
performed the series of tasks on each interface over the course of the study. Each task was 
video recorded for researcher analysis. 
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Table 2. Experimental Design 

Device Tasks performed Users tested Trials run  

BTN All 13 65 

HYB All 13 62 

SMT All 12 60 

TCH 1, 2, 3, 4, 5* 12 60 

WEB 1, 3, 4, 5 12 48 

*Task 2 TCH consisted of only setting the time not the date. 

 

Two computerized surveys were administered prior to any interaction the subject had with the 
thermostat interfaces. The purpose of the surveys was to record the subjects’ age range as well 
as their self-rated experience level with programmable thermostat interfaces.  

After subjects performed each task, they filled out a self-evaluation of their performance on that 
particular task. This computerized self-evaluation was based on the NASA Task Load Index 
(NASA, 2010) and consisted of four questions regarding users’ mental demand, performance, 
effort, and frustration levels on a 7-point scale from low (easy) to high (challenging). 

Subjects were verbally informed that if they were unable to perform a task they could move on 
to the next task by informing the experimenter they were “not able to perform this task.” If 
subjects needed clarification on the task requirements or instructions, the experimenter was 
permitted to answer relevant questions, otherwise the experimenter was not permitted to talk 
or to assist the subject in any way during the course of the task. 

Experimental Conditions 
The study was conducted during the summer months in a lab setting in Berkeley, California. 
Subjects were specifically asked to imagine that it was winter and that they wanted to heat their 

residence. Heat mode was chosen instead of cool mode due to the temperate climate in 
Northern California in which residents would not necessarily have air conditioning. Subjects 
were reminded before each task that they should imagine it was wintertime in their home and 
that they should evaluate or select temperatures for heating. 

A video recording of each session was used to input numerous categories of data including task 
completion, time on task, function path (buttons and function interactions), interaction motions 
(press, slide, hold, etc.), interaction errors, and experimenter observations regarding users’ 
confusion during the task. 

A code for the buttons, functions, and interaction motions on each interface was developed for 
recording purposes. 

Interaction errors were recorded as actions with no effect, or ane, defined as any action that did 

not change the state of the thermostat. The ane actions included failed attempts at opening the 
device’s cover or flap, touching text or icons that were not touch sensitive, pressing buttons or 
functions that did not change the device’s state within the current mode, and performing any 
interaction motion on the interface that did not change the state. 

User confusion was recorded as any hesitation or pause (three seconds or greater) between 
functions. The experimenter also recorded all verbal expressions of the subject that could 
indicate confusion or an emotional response to the interface. These verbal observations included 
phrases that expressed confusion, task success, task failure, extreme exasperation, or surprise. 

Description of the Metrics 

In developing our metrics, we had two primary aims in mind. First, we wished to capture the 
unique elements of user behavior when interacting with PTs, for example, how users deal with a 
constrained number of buttons/controls that require the implementation of multiple system 
modes or with small screens mounted in inconvenient locations. Second, we wished to develop 
metrics that would be acceptable to thermostat manufacturers and provide them with some 
choice in how they record and measure usability. A usability metric must be itself usable to 
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facilitate widespread adoption. A common drawback of many usability metrics involving task 
duration or number of steps to complete a task is that the value of the metric is unbounded and 
varies from task to task. This creates a difficulty; the metric cannot be compared on an absolute 
scale from one task or device to another. This challenge was recognized by Sauro and Kindlund 
(2005) when they devised their SUM metric. However, the NIST standard efficiency metric does 
have the drawback of being unbounded (NIST, 2001). 

An unbounded metric would be difficult to use in a program such as EnergyStar™ run by the 
EPA. The EPA and manufacturers need to define a single measure of usability to facilitate 
consumer understanding and to create an absolute scale of usability that is not dependent on 
arbitrary task length. 

Additionally, our four metrics each have different inputs that are all highly correlated. This offers 
manufacturers several diverse options in selecting a metric most appropriate to their available 
resources and testing environment, whether in a usability lab or remotely. 

Metric Development 
In order to create such metrics, we decided to utilize the logistic function (Verhulst, 1838): 

 ( )   
 

      
 

The logistic function is a sigmoid curve, commonly used in a variety of applications across 
multiple fields. It is often employed for the normalization of data, as it maps the real line 
  (    ) to the interval (0, 1). Thus an unbounded domain can be mapped to a finite range. 

Because our data was non-negative but had an unbounded upper limit, and because higher task 
durations or path lengths were “worse” than lower ones, we chose a variant of the logistic 
function 

 

     
 

that maps [   ) to the interval [1, 0). In other words, a shorter time on task or path length is 

mapped to a value close to 1, and a longer time or path length would be mapped to a value 
closer to 0. 

Additionally, we wished to account for success rates on a per-trial basis (where a task “trial” is a 
single instance of a participant performing a task on a thermostat model, also sometimes called 

a “task observation”) rather than averaging over all trials of a given task. In order to accomplish 
this, we incorporated the task completion or success rate variable, s, directly into our primary 
equation, which we called the “M” statistic. The M statistic is calculated for each metric i as 
follows on a per-trial basis: 

 

   
  

      
 

where 

                                           

  {
                                    
                           

  

Note that Mi will always be normalized between 0 and 1. The distinguishing variables for each 
metric will be defined later in this section. 

The success rate variable, s, also always falls between 0 and 1. It can be a binary variable 
(where s = 1 if the task is completed and 0 otherwise), have multiple values for partial success 
(e.g., if the task has several subparts that can be completed successfully), or be a continuous 
variable that measures percentage of task completion. For the purposes of the metrics 
evaluated in this paper, s is always either a binary (s = 0 or 1) or a trinary variable (s = 0, 0.5, 
or 1). 

Note that the M-statistic combines time on task with success of the trial in an intuitive manner: 
If the task is not completed so that s = 0, the value of the M-statistic is 0. Intuitively, this 
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means that if the task was not completed, it should not matter how long the user spent 
attempting it; it is still a failure. If, on the other hand, the task is completed successfully, then 
the time on task (or other distinguishing variable such as path length) weighs into the M-
statistic. For example, a shorter task duration will yield a higher value of M, a longer task 
duration will yield a lower value of M, and an uncompleted task will set M = 0. 

The distinguishing variable in the M-statistic equation, xi, is defined differently for each of the 
four metrics. The metrics are named Time & Success, Path Length, Button Mash, and Confusion. 
Note that “good” values of each of these metrics are close to 1, and “bad” values are close to 0. 
In addition, an empirically determined scaling factor, ki, was incorporated into each metric to 
maximize data dispersion. Because the metric values changed based on units chosen (hours vs. 

minutes, for example), we selected constant k-values empirically in order that the data would 
spread evenly over the entire 0-1 range and enable straightforward comparison of the metrics.  

Finally, to compute the value of the metric, the M-statistic is computed over all trials and all 
tasks for a particular device model. These values are then averaged to produce the final metric 
value. The four metrics and their distinguishing variables are described in detail below. 

Time & Success 
For the Time & Success metric, the distinguishing variable was the time on task, t, measured in 

seconds. Starting time commenced when users were told by the experimenter to begin. End 
time was defined as the point at which subjects either verbally confirmed they had completed 
the task or verbally confirmed that they were unable to complete the given task. 

        

where 

  = time for subject to complete the task (seconds) 

   = 50 (empirically determined constant) 

Path Length 
For the Path Length metric, the minimum path length, m, was defined as the shortest function 
path (e.g., series of button presses if the device had buttons) that a user could invoke to 
successfully accomplish a given task. Whenever possible, this path was determined by using the 
path given in the device user’s manual. The actual number of functions (e.g., buttons, actions 
such as opening cover) used, f, was calculated as the number of functions the user attempted 
while trying to complete a task. This included actions that were not successful, such as when a 
user attempted to press an area of the device that was not touch sensitive. 

   
 

   
 

where 

  = number of buttons (functions) user actually acted upon  

  = minimum number of buttons (functions) required to complete the task 

   = 5 (empirically determined constant) 

Button Mash Effect 
The determining variable for this metric was the sum of the number of times the user attempted 
to interact with the interface without actually changing the state or programming of the device. 
This number was also termed interaction errors or actions with no effect, ane. We named this 
metric the Button Mash effect due to the manner in which the mental state of the user at times 
appeared to mirror the common gaming phenomenon known as “button mashing,” in which a 

gamer, often a novice, presses any or all buttons possible in a frenetic attempt to affect their 
progress in the game (Murphy, 2004). The interaction errors similarly reflect users’ lack of 
understanding of how functions on the device or screen would affect their progress in a task. 

          

where 

    = number of actions with no effect  

   = 5 (empirically determined constant) 
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Confusion 
The distinguishing variable of the Confusion metric was the total number of hesitations, h, that 
users incurred over the course of a task. A hesitation was defined to consist of a pause or stop 
in user interaction for three seconds or longer. A pause was considered an indication that the 
user was uncertain of the next steps to complete the task. 

        

where 

  = sum of count of user hesitations ≥ 3 seconds  

   = 2 (empirically determined constant) 

Results 

The following Figures 1-4 depict the mean values for all thermostat models over five tasks for 
each of the four metrics, with error bars at the 95% confidence level. An analysis of variance 

(ANOVA) showed that for the Time & Success metric, the effect of thermostat model on usability 
was significant F(4, 290) = 15.3, p < .01. The effects were similarly statistically significant for 
Path Length, F(4, 290) = 20.6, p < .01; Button Mash, F(4, 290) = 12.7, p < .01; and 
Confusion, F(4, 290) = 16.2, p < .01.  

  

Figure 1. The Time & Success metric for all thermostats 

 

Figure 2. The Path Length metric for all thermostats 
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Figure 3. The Button Mash metric for all thermostats 

 

Figure 4. The Confusion metric for all thermostats 

The metrics we developed provided an identical ranking of the interfaces (with the exception of 
the Path Length metric for which TCH and SMT were essentially equal or within .0009). There 
was some difference in the values of the individual metrics, demonstrating that they are likely 
to be equivalent in practice. We also show a close correlation between our metrics later in this 

section. Our metrics ranked the thermostats in order of most usable to least usable as follows: 
the Web-based thermostat, WEB, was ranked the highest, followed by the touchscreen, TCH, 
then the “smart” thermostat, SMT. Significantly lower ranked was the button-based thermostat, 
BTN, with the hybrid model, HYB, coming in last. 

Comparison with NIST Metric 
This metric is defined in the Common Industry Format for Usability Test Reports (NIST, 2001); 
it is the ratio of the task completion rate to the mean time per task. While it is interesting to 
note that the NIST metric produced the same ranking of thermostats and was highly correlated, 
there were several drawbacks to using it as a benchmark (Figure 5). One challenge was that we 
could not determine statistical significance due to the nature of the NIST metric, which was 
averaged over all participants. An additional drawback of the NIST metric was that it varied 
based upon the mean completion time per task. Thus this metric was only suitable for relative 
comparisons within a single usability test. 
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Figure 5. The NIST metric for all thermostats 

Comparison with SUM Metric 
Sauro and Kindlund (2005) defined a SUM that produces a single value, scaled from 0 to 1, and 
that combines time, completion, satisfaction, and error rate. We are not aware of any published 
work applying the SUM to usability of PTs, appliances, or other embedded devices. The authors 
do acknowledge the importance of testing their metric on additional interfaces and hardware 
beyond desktop software applications. 

We computed the SUM metric on our data using Sauro’s spreadsheet at 
measuringusability.com. The ranking of interfaces was similar (with the exception of the 
ordering of TCH and SMT), yet we were not able to obtain statistically significant results on our 
data given the close score of most of the interfaces. Figure 6 shows the SUM with error bars at 
the 95% confidence level.  

Given the manner in which the SUM spreadsheet calculates the error rate and based on 
feedback we received from Sauro (personal communication, May 13, 2011), it was necessary to 
cap the number of errors to be no greater than the error opportunities for each task.  

On PTs it may not be possible to accurately capture some of the idiosyncrasies of the interface 
with the SUM metric, hindering our ability to obtain useful results. One primary example of this 
is the inclusion of the user satisfaction rating within the SUM. We found that users often did not 
receive clear feedback on whether they had successfully completed a task from the interface 
itself and therefore their satisfaction score did not necessarily reflect an actual outcome on the 
device. The potential challenges with user satisfaction as an accurate usability measure for PTs 
is further discussed in the Task Load Evaluations section.  

 

Figure 6. The SUM metric for all thermostats 
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Expert Evaluation 
Each thermostat underwent a subjective evaluation by a usability expert applying a set of 
heuristics (Nielsen & Molich, 1990) to rate the usability of the device in performing all tasks. 
The evaluator scored each task on a Likert scale of 1-5 where 1 was defined as fairly easy and 5 
was highly difficult to use. The scores for each thermostat were then averaged and scaled to 0-1 
to produce a relative ranking among devices (Figure 7). The expert evaluation ordering did 

differ slightly from the metrics we established (Time & Success, Path Length, Button Mash, and 
Confusion) as the SMT and BTN switched in the ranking placing the SMT in a lower position. This 
shift could possibly be attributed to a considerably lower score given to SMT in Task 2 (Time & 
Day). In this task the expert noted that the icons to change the date and time were hidden 
behind additional controls making it especially challenging for users to find them. Without the 
inclusion of Task 2 in the expert evaluation the order matches the ordering of our four new 
metrics exactly. 

The Web-based system, WEB, scored higher according to the usability evaluation due to clearly 
labeled HVAC controls and temperature settings that were easily visible on the home screen 
display of the platform. The hybrid touchscreen and button thermostat, HYB, scored poorly due 
to controls hidden by a plastic cover, inconsistent distinctions between touch and non-touch 
sensitive areas of the display, and lengthy function paths. 

 

Figure 7. Expert evaluation for all thermostats 

Task Load Evaluations 
After each task users were asked to provide their own subjective evaluation of the device in a 
series of four questions regarding mental demand, performance, effort, and frustration. 
Questions were modeled on the NASA Task Load Index (TLX) and consisted of a Likert scale 
from 1 (easy) to 7 (difficult). While the users’ self-reported evaluation of the devices matched 
our metrics to some degree, with the WEB and TCH receiving a stronger ranking and the HYB 
receiving the lowest score, there was not a significant variation among the device scores 
themselves as shown in Figure 8. 

One possible explanation for the perceived lack of differentiation between devices was that 
users did not have direct feedback on whether or not they had successfully completed each 
task. When comparing users’ self-evaluation of performance with their actual completion the 
correlation was .53, showing that users’ perception of performance did not necessarily match 
actual performance on the device. This difference in perception was further supported by the 

fact that 35% of the users who were unable to complete the task gave themselves a strong 
performance rating (1-3 on a 7-point scale with 1 being perfect). Many times users that 
successfully completed tasks seemed no more certain of their success than those who did not 
complete the task. One participant commented, “I’m not sure if I got it” after he had in fact 
completed Task 5 successfully for BTN. Another user for the same task and using the same 
device remarked he was “done” with the task (setting the device to hold) when in fact he had 
set the WAKE temperature to 70 degrees and had not touched the hold function. 
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Figure 8. Users self-reported score averaged for each device 

Correlation of Metrics 
We computed a Pearson’s correlation of our four metrics, the NIST metric, the SUM metric, an 
expert evaluation of PT usability, and the NASA Task Load Index (TLX). Our four new metrics 
were all highly correlated with each other (≥0.96), as seen in Table 3. Our metrics were also 
strongly correlated with the NIST and an expert’s evaluation. Our metrics not only show high 
accuracy but also offer organizations several options for evaluating the usability of an interface. 

Table 3. Correlations Among the Seven Metrics 

  T&S PATH MASH CONF NIST SUM EXPERT TLX 

T&S 1.00 

       
PATH 0.96 1.00 

      
MASH 0.98 0.92 1.00 

     
CONF 0.99 0.98 0.95 1.00 

    
NIST 0.95 0.91 0.98 0.95 1.00 

   
SUM 0.91 0.98 0.89 0.95 0.92 1.00 

  
EXPERT 0.95 0.85 0.99 0.90 0.94 0.80 1.00 

 
TLX 0.88 0.84 0.86 0.81 0.75 0.74 0.87 1.00 

 

Discussion 

The need for a normalized metric that could enable thermostat manufacturers and standards 
agencies to compare the usability of PTs across a wide variety of functional designs was a 
driving factor for this research. When conducting a formal usability study, one is often 
confronted with a bewilderingly vast array of data, and, as Sauro and Kindlund (2005) have 

pointed out, there is a need to digest and simplify it for human understanding. 
To illustrate this principle, we discuss some of the results of our data analysis. In the initial 
analysis of a small subset of our data, the time on task and completion rate for a single task 
(the Set Heat task), we produced the graphs displayed in Figure 9. 
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Figure 9. Elapsed time and completion rates for the Set Heat task 

A question we have often seen discussed (with differing answers) in guidelines for measuring 
usability is “Do we look only at successful tasks when measuring time on task?” (Tullis & Albert, 
2008). We were faced with a set of both successful and unsuccessful tasks in this case; it 
appeared to us that ignoring the uncompleted tasks would skew our data, yet including time on 
task for both successful and unsuccessful tasks would be comparing apples to oranges (note the 

different ranking of the thermostats in Figure 9 based on merely averaging time on task across 
all trials). 

In order to make sense out of the data and to provide clear guidelines for manufacturers or 
government programs such as EnergyStar™, we wished to combine the time on task values 

with task completion values and produce a single, normalized metric that could be defined on an 
absolute scale. This ultimately led to our selection of the logistic function to normalize our data 
and to our use of a combined time and success metric. 

We selected the four metrics of Time & Success, Path Length, Button Mash, and Confusion to 

examine a diverse set of performance measures benchmarking thermostat usability. Metric 
variables such as completion and time on task, which form the basis of our Time & Success 
metric, are standard industry measurements for usability (NIST, 2001). The three additional 
metrics, while highly correlated to Time & Success, offer several different options for evaluating 
an interface.  

We considered the Path Length metric relevant to embedded systems such as thermostats given 
the importance of function accuracy to accomplish a task. In hypertext a user that has gone 
down the wrong path might be unable to accomplish the task, but the system itself is often left 
in the same condition as before the user attempted the task (Otter & Johnson, 2000; Smith, 
1996). In an embedded device such as a thermostat, the wrong path can lead to drastically 
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different states or modes than the user intended, and users can continue down a wrong path, 
receiving little feedback from the thermostat display. This was exemplified in a previous 
research study on PTs when a user attempting to set the clock time mistakenly programmed the 
morning WAKE schedule and thus inadvertently changed her temperature settings (Meier et al., 
2010). Such errors can have substantial effects on energy usage. The Path Length metric offers 
a way to note the severity to which users deviate from the recommended or ideal function path 
so that these errors can be avoided early in the design process.  

The Button Mash metric provides a way to gauge user confusion over system affordances and 
also offers insight into some of the unique usability challenges of PTs, appliances, and other 
embedded systems. The sum of interaction errors reflects whether a user's mental model of the 

system matches with the actual affordances of the system. While industry principles for 
touchscreen graphical user interface (GUIs) have encouraged appropriate affordances, such as 
distinguishing touch sensitive and non-touch sensitive areas of the display (Murphy, 2001), 
there is as yet little consistency of affordance design among thermostats. Prescriptive design 
principles are helpful in elucidating some of these affordances to a user, but given the rapid 
pace of development in GUIs and the increasingly broad types of interactions designed for 
embedded systems (touch, gesture, voice, sound, etc.) it would be difficult to employ a one-
size-fits-all prescriptive model. The Button Mash metric offers a way to test whether a user 
understands a diverse set of affordances. 

Similarly, the Confusion metric can be applied to a wide variety of embedded system interfaces 
to achieve the same result. By recording the user pauses (over three seconds) we were able to 
quantify users' level of insecurity and confusion regarding their next steps to accomplish a given 
task. Three seconds was selected as the threshold based on previous research on user 
hesitations suggesting this was the minimum amount of time of inactivity that would indicate 
user confusion or difficulty (Reeder & Maxion, 2006). 

Measuring the usability of embedded systems that are not located on a PC is particularly 
important given the limited attention users often have for the interface (Murphy, 1998). Our 
four metrics not only offer a simple, normalized manner to evaluate the usability of PTs within a 
usability lab but can also be applied remotely to evaluate real-time user interactions with a 
device. While the Time & Success metric might be best suited to a lab environment where time 

can be discretely measured, the Path Length and Button Mash metrics are not time dependent 
and would be appropriate for use by companies recording data remotely from Web-connected 
PTs.  

Future Research Opportunities  

Due to the ubiquity of PTs and the dearth of usability metrics in this area, there is a clear need 
for further work in the field. There were many areas of interest that became apparent during 
the course of our research that we would like to pursue further. 

While the current data shows a strong correlation among our metrics as well as with NIST and 
an expert’s evaluation, we would like to conduct further studies to demonstrate the repeatability 
of these results. Because the primary impetus of this research was to provide an actionable test 
that manufacturers could apply to their own thermostats with minimal cost it is important to 
ensure third-party verification of results. This is especially relevant given the use of these 
metrics to inform EPA EnergyStar™ usability standards. There is further potential for the metrics 
to be applied to a host of embedded systems to reduce barriers to efficient energy usage. 

As PTs and similar devices become more advanced, there is also more potential research that 
can be done regarding the automation of our testing procedure. As an example, manufacturers 
can capture functions using a simulator that could be uploaded directly into our metric for Path 
Length. This would require minimal effort on the part of manufacturers. Also, as a growing 
number of appliances become "smart" in their communications with other systems there is the 
possibility to measure real-time user performance as the product performs in the commercial 
market. Several thermostat manufacturers with WiFi enabled devices are already gathering 
information regarding system states and could easily capture data on the function path as well. 

User comments and patterns in common errors provide additional insight into good and poor 
designs for thermostats. Some of these design choices are already a common part of good 
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usability standards, including font size. As one user commented, “There are very small letters 
here; I’ll have to get my glasses,” while trying to read the instructions on the cover of the 
device. Other design choices are more specific to the growing use of small touch screens in 
embedded devices. This includes confusion regarding the touch sensitivity of icons. One user 
repeatedly touched blank, non-touch sensitive areas of the HYB screen while trying to complete 
Task 3. This action was not uncommon. There is much continued work that could be done to 

document design principles for thermostats and create a possible reference device for use by 
manufacturers. 

Conclusion 

Federal agencies such as the EPA and DOE, and programs such as EnergyStar™, are beginning 
to realize the impact that usability can have in achieving the nation’s energy savings goals. 
However, manufacturers of thermostats and other appliances are unlikely to accept non-
quantitative standards for usability, and there does not yet exist such a standard metric in this 
domain. To this end, we developed a novel set of usability metrics specific to PTs, which could 
also be used on other embedded devices. Via a formal usability study of five thermostat models, 
we demonstrated that the metrics are effective at distinguishing devices based on usability and 
are highly correlated with each other—NIST, the industry standard, and with an expert’s 
subjective usability evaluation utilizing standard heuristics. Additionally the metrics are 
normalized to the interval [0, 1], enabling an objective standard across devices while offering 
manufacturers and organizations several different options for evaluating interface usability. 

We have submitted these metrics to the EPA’s EnergyStar™ program with the goal of facilitating 
the uptake of usability engineering principles among manufacturers of thermostats, appliances, 
and other embedded devices. Ultimately, we hope to make a contribution to sustainability by 
contributing to the design of better tools that will enable individuals to make informed choices 
on issues such as reducing energy consumption. 

Practitioner’s Take Away 

Our usability study confirmed a number of usability issues with current programmable 

thermostats (PTs) and identified four novel metrics that can be used to quantitatively evaluate 
the usability of PTs. Our results could be generalized to embedded devices in other domains 
where quantitative metrics are desired.  

The following are key points from our research: 

 PTs and other small appliances often exhibit poor usability. 

 Manufacturers of such appliances often prefer quantitative measurements of usability to 
qualitative evaluations.  

 The metrics we devised show reasonable correlations with each other and with the NIST 
industry standard while having the additional benefit of being normalized for easier 
interface comparison. 

 Our four metrics contain several input options allowing manufacturers to freely choose 
between them based on convenience. 

 Metrics that combine time-on-task with success/failure rates to yield a single usability 
score may have greater uptake among PT manufacturers.  

 User satisfaction ratings alone are not a complete measure of usability when the device 
does not have sufficient and direct feedback on task success. 

 Usability evaluations are recommended for future PT designs to realize energy savings. 

Acknowledgements 

This work was supported by the Office of Energy Efficiency and Renewable Energy, Building 
Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. We would additionally like to acknowledge and thank Gari Kloss for her 
tremendous work in the management and coordination of this study. 



242 

Journal of Usability Studies Vol. 6, Issue 4, August 2011 

References 

Babiker, E. M., Fujihara, H., & Boyle, C. D. B. (1991). A metric for hypertext usability. 
Proceedings of the 9th Annual international conference on Systems documentation, 
Chicago. 

Boait, P. J., & Rylatt, R. M. (2010). A method for fully automatic operation of domestic heating. 
Energy and Buildings, 42(1), 11-16. 

California Energy Commission (CEC). (2004). California Statewide Residential Appliance 
Saturation Study (No. 300-00-004). Sacramento: California Energy Commission. 

Consumer Reports. (2011). Programmable thermostats still need to get with the program. 

Retrieved on April 2011 from 
http://news.consumerreports.org/appliances/2011/04/programmable-thermostats-still-too-
tough-to-program-study-finds.html  

Critchleya, R., Gilbertsona, J., Grimsleya, M., Greena, G., & Group, W. F. S. (2007). Living in 

cold homes after heating improvements: Evidence from warm-front, England's home energy 
efficiency scheme. Applied Energy, 84(2), 147-158. 

Cross, D., & Judd, D. (1997). Automatic setback thermostats: Measure persistence and 
customer behavior, Chicago. 

Decision Analyst. (2008). 2008 American home comfort survey. Arlington: Decision Analyst. 

Environmental Protection Agency (EPA). (2009). Programmable Thermostats Web Page. 
Retrieved March 2010 from 
http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_
code=TH  

Haiad, C., Peterson, J., Reeves, P., & Hirsch, J. (2004). Programmable thermostats installed into 
residential buildings: Predicting energy savings using occupant behavior & simulation. 
Southern California Edison. 

Karjalainen, S., & Koistinen, O. (2007). User problems with individual temperature control in 
offices. Building and Environment, 42(8), 2880-2887. 

Meier, A. K., Aragon, C., Hurwitz, B., Mujumdar, D., Perry, D., Peffer, T., & Pritoni, M. (2010). 
How people actually use thermostats. Proceedings of the 2010 ACEEE Summer Study on 
Energy Efficiency in Buildings, 2, 193-206. 

Murphy, N. (1998). Front panel: Designing software for embedded user interfaces. Lawrence, 
KS: R&D Books. 

Murphy, N. (2001). Usability for graphical user interfaces. EE Times (was Embedded Systems 
Programming). Retrieved August 2010 from 
http://www.eetimes.com/design/embedded/4023286/Usability-for-Graphical-User-
Interfaces  

Murphy, S. (2004). Live in your world, play in ours: The spaces of video game identity. Journal 
of Visual Culture. Retrieved August 2010 from 
http://vcu.sagepub.com/content/3/2/223.short?rss=1&ssource=mfc  

National Atmospheric and Space Administration (NASA; Producer). (2010). NASA TLX: Task 

Load Index. Retrieved June 2010 from 
http://humansystems.arc.nasa.gov/groups/TLX/computer.php  

National Institute for Standards and Technology (NIST). (2001). Common industry format for 
usability test reports, version 2.0. Gaithersburg: NIST. 

Nevius, M., & Pigg, S. (2000). Programmable thermostats that go berserk: Taking a social 
perspective on space heating in Wisconsin. Proceedings of the 2000 ACEEE Summer Study 
on Energy Efficiency in Buildings, 8.233-238.244. 

Nielsen, J., & Molich, R. (1990, April 1-5). Heuristic evaluation of user interfaces. Proc. ACM 
CHI'90 Conf (pp 249-256). Seattle, WA. 

http://news.consumerreports.org/appliances/2011/04/programmable-thermostats-still-too-tough-to-program-study-finds.html
http://news.consumerreports.org/appliances/2011/04/programmable-thermostats-still-too-tough-to-program-study-finds.html
http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TH
http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TH
http://www.eetimes.com/design/embedded/4023286/Usability-for-Graphical-User-Interfaces
http://www.eetimes.com/design/embedded/4023286/Usability-for-Graphical-User-Interfaces
http://vcu.sagepub.com/content/3/2/223.short?rss=1&ssource=mfc
http://humansystems.arc.nasa.gov/groups/TLX/computer.php


243 

Journal of Usability Studies Vol. 6, Issue 4, August 2011 

Otter, M., & Johnson, H. (2000). Lost in hyperspace: Metrics and mental models. Interacting 
with computers, 13, 1-40. 

Peffer, T., Pritoni, M., Meier, A. K., Aragon, C., & Perry, D. (2011). How People Use 
Thermostats: A Review. Building and Environment, 46(12), 2529-2541. 

Rathouse, K., & Young, B. (2004). RPDH15: Use of domestic heating controls. Watford: Building 
Research Establishment, UK. 

Reeder, R. W., & Maxion, R.A. (2006). User interface defect detection by hesitation analysis. 
Proc. of the 2006 International Conference on Dependable Systems and Networks, 
Philadelphia, PA. 

Sauro, J., & Kindlund, E. (2005). Using a single usability metric (SUM) to compare the usability 

of competing products. Proceedings of the Human Computer Interaction International 
Conference (HCII). Available at 
http://www.measuringusability.com/papers/HCII2005_sauro_kindlund-V9.pdf  

Shipworth, M., Firth, S. K., Gentry, M. I., Wright, A. J., Shipworth, D. T., & Lomas, K. J. (2010). 

Central heating thermostat settings and timing: Building demographics. Building Research & 
Information, 38(1), 50 - 69. 

Smith, P. (1996). Towards a practical measure of hypertext usability. Interacting with 
computers, 8(4), 365-381. 

Tullis, T., & Albert, B. (2008). Measuring the User Experience. Burlington: Elsevier, Inc. 

U.S. Department of Energy. (2011). Thermostats and Control Systems Web Page. Retrieved 
August 2011from http://www.energysavers.gov/tips  

Verhulst, P.-F. (1838). Notice sur la loi que la population poursuit dans son accroissement. 
Correspondance mathématique et physique, 10, 113-121. 

  

http://www.measuringusability.com/papers/HCII2005_sauro_kindlund-V9.pdf
http://www.energysavers.gov/tips


244 

Journal of Usability Studies Vol. 6, Issue 4, August 2011 

About the Authors 

 

Daniel Perry 

Daniel Perry is a PhD 
student in Human 
Centered Design & 
Engineering at the 
University of Washington 
and a researcher in the 
Scientific Collaboration & 
Creativity Lab (SCCL). He 
holds a BA from Brown 
University and a MIMS 
from the University of 
California, Berkeley. His 
research interests include 
scientific visualization, 
usability and energy saving 
behavior, and collaborative 
games. 

 

 

Cecilia Aragon 

Cecilia R. Aragon has a 
PhD in Computer Science 
from the University of 
California, Berkeley and 
is an Associate Professor 
of Human Centered 
Design and Engineering 
at the University of 
Washington (UW). She 
directs the Scientific 
Collaboration and 
Creativity Lab (SCCL) at 
UW. Her research 
interests include visual 
analytics for eScience, 
collaborative creativity, 
and usability in daily life. 

 

Alan Meier 

Alan Meier is a senior 
scientist at Lawrence 
Berkeley National 
Laboratory and a Faculty 
Researcher at UC Davis. 
He earned his PhD in 
Energy & Resources from 
UC Berkeley after 
completing degrees in 
chemistry and economics. 
Meier's research includes 
technical measures to 
reduce standby power use 
in appliances, improving 
usability in controls, and 
policies to save electricity. 

 

Therese Peffer 

Therese Peffer is a 
Research Coordinator for 
the California Institute 
for Energy and 
Environment’s Enabling 
Technologies program. 
She works on Demand 
Response, Smart Grid 
and "Building-to-Grid" 
research projects. She 
holds a PhD in 
Architecture from the 
University of California, 
Berkeley. 

 

 

 

Marco Pritoni 

Marco Pritoni is a PhD 
student in Mechanical and 
Aeronautical Engineering 

at UC Davis. He holds a 
Masters' Degree in 
Industrial Engineering from 
the University of Bologna, 
Italy. He is currently a 
graduate student 
researcher for the UC 
Davis Western Cooling 
Efficiency Center and an 
Emerging Ventures Analyst 
for the UC Davis Energy 
Efficiency Center. 

  

 


