
Heading for odd numbered pages

1

Open Software-Architecture for Building Monitoring
and Control

Carl Blumstein*, David Culler‡, Gabe Fierro‡, Therese Peffer* and Marco
Pritoni+

*Berkeley Energy and Climate Institute, University of California, Berkeley
‡Electrical Engineering and Computer Science, University of California, Berkeley
+Mechanical and Aerospace Engineering, University of California, Davis

Abstract

Information technology can increase energy efficiency by improving the control of
energy-using devices and systems. Awareness of this potential is not new—ideas for
applications of information technology for energy efficiency have been promoted
for more than 20 years. But much of the potential gain from the application of
information technology has not yet been realized. Today a combination of new
requirements for the operation of the electricity system and the development of
new technology has the potential to cause a rapid increase in the pace of adoption
of improved controls. In this paper we discuss one promising avenue for
technology advancement. First, we review some basic concepts with emphasis on
open software-architecture. Then we describe the components of XBOS, a
realization of this open software-architecture. XBOS has the ability to monitor and
control many different sensors and devices using both wired and wireless
communication and a variety of communication protocols. Finally, we illustrate the
capabilities of XBOS with examples from an XBOS installation in a small
commercial office building in Berkeley California.

Keywords

building controls, building automation, open software-architecture

Introduction

Information technology can increase energy efficiency by improving the control of
energy-using devices and systems. Awareness of this potential is not new—ideas for
applications of information technology for energy efficiency have been promoted
for more than 20 years. But much of the potential gain from the application of
information technology has not yet been realized. In an earlier paper one of the
authors (Blumstein (2011)) discussed some reasons for the slow exploitation of
information technology’s potential to increase energy efficiency. The earlier paper
also suggested that a combination of new requirements for the operation of the

Open Software-Architecture for Building Monitoring and Control

 2

electricity system and the development of new technology could cause a rapid
increase in the pace of adoption.

This paper is about open software-architecture1 for the control of energy use in
buildings. Open software-architecture is a way of organizing the software that links
together the physical elements of a building control system to allow the addition of
other systems or components. The reason we are concerned about open software-
architecture is that open software-architecture is the key to creating an environment
that supports innovation. Proprietary and closed systems, which are prevalent today,
typically create barriers to innovation.

To make this clear, consider a commercial building with a control system for its
Heating Ventilating and Air Conditioning (HVAC) system. If you want to control
the lighting in the building, the technology currently used for HVAC control cannot
easily be modified for lighting control—in practice you need to add a completely
separate control system for lighting. Further, if the control system for lighting
includes occupancy sensors and you want to use occupancy to control HVAC, you
cannot, as a practical matter, use the lighting system’s occupancy sensors. Still
further, if you develop new software for detecting faults in the HVAC system, you
cannot easily install the new software in the existing building control software.
These are all problems that can be solved with open software-architecture.

We will have more to say about how we addressed these problems in a small
commercial office building in Berkeley California later in this paper. First we discuss
in more detail the idea of open software-architecture, drawing on lessons from the
Internet.

Lessons from the Internet

The most important lesson from the Internet is interoperability—the ability of the
Internet to accommodate diverse devices and systems and enable them to work
together. The practical effect of interoperability is that equipment suppliers and
software developers can compete to supply established needs and can innovate to
create new uses. This environment has fostered both cost reductions and rapid
innovation. So, one may well ask, can we make building monitoring and control
systems look like the Internet? The answer is, yes we can.

Doing this is facilitated by using the Internet’s open architecture and protocol stack.
The critical step is to move from a vertical to a horizontal architecture—an essential
element of open architecture. Figure 1 provides a simplified representation of
horizontal layered architecture2 to help explain the concept. Each layer is
independent, and thus creates modularity. The bottom layer in Figure 1, here called

1 Readers should be careful to distinguish between open software-architecture and

open-source software. Open software-architecture does not necessarily involve open-source
software.

2 The phrase “layered architecture” does not refer to spatial relationships among the
system’s components; rather, it refers to logical relationships. The “layers” are an
abstraction. Here we are using the word “layers” as a heuristic; it has more specialized
meanings in other contexts.

Heading for odd numbered pages

3

the hardware presentation layer, is where the control system connects to the
physical environment. This layer interconnects sensors and actuators to the other
layers through software adaptors called drivers. The middle layer—system
services—organizes, stores, and transmits data from the hardware presentaion layer

and instructions from the application layer. The top layer, here called the
application layer, has software applications that operate on data provided by the
system services to produce outputs in the form of information (e.g., a dashboard)
on the state of the building and instructions for the control of building systems.

Not all control is initiated on the application layer; some happens autonomously on
the sensor/actuator layer—for example, lights might be directly controlled by an
occupancy sensor. And not all instructions from the application layer are accepted.
For example, a smoke alarm may override an instruction to open a damper. To
make this more concrete, consider a building appropriately equipped with sensors,
actuators, and applications. Suppose that the operator of the building wishes to
minimize energy use during the peak time on a hot day by precooling the building
so it can ride through the peak time. An application in the application layer contains
a model of the building that can predict the best time to turn on the air
conditioning based on the outdoor temperature, the indoor temperature, the
weather forecast, and other variables all of which are resident in a database in the
system services layer. The application gets the data from the database and predicts
the best time to turn on the chillers, say, 7:00AM. If sensors and controllers in the
hardware presentation layer determine that operation is safe, the chillers will be
turned on at 7:00AM.

The difference between horizontal and vertical architecture is not in the functions
that need to be performed. Sensing and actuating, data management and
applications need to happen in monitoring and control systems regardless of the
architecture. The difference is in the separation of these functions. In a vertical

Figure 1 A simplified representation of layered architecture for building monitoring and control

Open Software-Architecture for Building Monitoring and Control

 4

system a “black box” might, for example, have hard-wired connections to sensors
and actuators and have applications with built-in data structures that were
inaccessible to other applications. Horizontal layered architecture can keep the
functions from becoming entangled and allow devices and software from different
suppliers to interoperate.

Figure 2: The XBOS layered architecture, consisting of Hardware devices, a Hardware Presentation
Layer, System Services layer, and an Application layer. Drivers in the Hardware Preentation Layer
present vendor supplied hardware devices (sensors and actuators) to the Hardware Abstraction Layer as
canonical devices (for example, as a generic thermostat.

Open Building Control Architecture—the XBOS Example

Figure 2 illustrates the eXtensible Building Operating System (XBOS) a realization
of an open software-architecture control system. This program has evolved from
several years of work at UC Berkeley (see Dawson-Haggerty et al. (2013)). A more
detailed description of XBOS can be found in Fierro (2015).

XBOS is built on UC Berkeley’s simple Measurement and Actuaction Profile
(sMAP), an open-source information infrastructure for buildings and grids. The
Hardware Presentation Layer, shown in Figure 2, includes drivers for network
thermostats, lighting control, and general control, along with more than fifty other
open source drivers3 for energy metering, demand response notification, BACnet,

3 in https://github.com/SoftwareDefinedBuildings/smap/tree/master/python/smap/drivers

Heading for odd numbered pages

5

Modbus, commercial BMS systems, weather metering, thermal monitoring, air
quality monitoring, and so on.

While control systems based on open software-architecture are much more versatile
than vertically architected systems, open software-architecture systems do present
some challenges. An example is the need of recognizing new devices connected to
the system. XBOS handles this problem with a discovery service, which
automatically detects new devices on the network, finds and installs the appropriate
sMAP driver, and configures it to that particular installation. This discovery service
is similar to “plug and play” as it appears in various forms in consumer markets,
such as plugging in a new hardware device into a PC or laptop. However, it does
not depend on vendor products implementing a particular discovery standard. The
discovery service receives notification of the presence of a new device, it probes the
device using a collection of detection scripts to identify what it is; once identified,
the service pulls in the appropriate driver for the device, creates the configuration
file integrating the driver and the particular site, and connects the device to the
system.

Vertically architected systems do not require a discovery service because, by design,
they do not interact with initially unknown devices. Other challenges for open
software-architecture are discussed in Fierro (2015)

Installation of XBOS in the Offices in the Berkeley Kress
Building

The research team developed a pilot test of the XBOS platform in a commercial
building in Berkeley, California that was built in 1935. The 700 square meter top
floor of the building holds private offices, open plan office space, a kitchen, and a
conference room; a server room for the office is on the mezzanine level. The
heating, cooling and ventilation system is provided by five packaged roof-top units
each controlled by programmable thermostats. The overhead fluorescent lighting
system is generally controlled by wall switches, with occupancy sensors in the
private offices; some corridor lighting remains on permanently.

The XBOS platform installation consisted of a miniature computer (FitPC),
Ethernet switch, and Wireless Access Point; this provided the means for all control
systems and sensors—no matter what network protocol—to communicate with the
computer. For example, some equipment required proprietary gateways (such as for
ZigBee devices such as the Enlighted lighting controller and the Rainforest power
meter); other equipment used simple USB dongles (EnOcean lighting controllers
communicating at 902 MHz and the environmental sensors using 802.15.4). The
computer held the sMAP drivers for communicating with all sensors and
controllers, and the database, archiver, and services (such as discovery described
above). A total of five smart thermostats, three different lighting controllers, two
general controllers, 14 sets of indoor environmental sensors and one power meter
were controlled by XBOS.

XBOS’s integrated control system provides several advantages over vertical
solutions. The unified interface greately improves user interaction as the building

Open Software-Architecture for Building Monitoring and Control

 6

manager can access all the devices from a single dashboard. It is possible to develop
such an interface, because data from heterogeneous devices is made uniform by the
hardware presentation layer. Devices can be organized and grouped in different
ways. For instance one can easily access all the lighting in the building or all the
systems (HVAC, lighting, plug loads and additional sensors) in a room. This simple
feature is not currently available in vertically integrated and isolated systems, since
each vendor uses separate intefaces that require distinct logins. It is almost
impossible to exchange data between commercial interfaces. In addition, XBOS
develops a building-level scheduler to enforce policies on the whole building. For
instance, when a calendar event occurs, all the devices are notified, synchronized
and their setpoints adjusted. The ability of accessing external sensors allows creating
customized control schemes. For example one can control the HVAC system based
on temperature measurements in rooms that are actually occupied.

One example of application that takes advantage of the rich sensor environment in
this field test is shown in Figure 3. Smart meter electric data is combined with
thermostat runtime and building operation hours to disaggregate energy use as a
function of building activity. The program distinguishes the baseload energy use
(standby power and constant operation of all the devices), the activity-based energy

use (extracted using opening hours), the startup and lag energy use (before and after
business time and above the baseload) and the weather-related energy use
(calculated associating HVAC runtime with smart meter data).

Figure 3: XBOS Energy Disaggregation Application. In the top graph, note the coincidence of spikes in
KW consumption (left scale, blue line) and the HVAC state (right scale, red line). In this instance just
one roof-top unit is operating. Small spikes occur when the fan comes on; larger spikes occur when
both the fan and the compressor come on.

Heading for odd numbered pages

7

Another key features of XBOS is that it operates on a ‘canonical representation’ of
a building, a generalized description of functional relationships between buildings
components. Because of this feature, new applications can be easily written, without
knowing the details of the different devices and their communication protocols.
The Hardware Abstraction Layer provides a common interface to devices like
thermostats or lighting controllers. This type of architecture, commonly used in
information technology (for example in Android smart phones), has not yet been
adopted in building systems.

Conclusion

We believe there is a compelling case for building controls based on open software-
architecture. As we have noted, the practical effect of the interoperability that open
software-architecture can provide is that equipment suppliers and software
developers can compete to supply established needs and can innovate to create new
uses. This can foster both cost reductions and rapid innovation. However, there are
significant impediments to the widespread adoption of this technology. Once they
make a sale, purveyors of proprietary vertically-integrated control systems have a
captive customer. Because only the original seller can perform maintenance and
provide product upgrades, this customer lock-in is highly profitable. Companies
with established products are not enthusiastic about changing their business models.

It is possible that there is more opportunity for open software-architecture in
smaller buildings where the dominant controls companies do not have a large
presence. This is part of the motivation for targeting XBOS at the small commercial
building market. However, this strategy is not likely to succeed if the work is done
in isolation. The XBOS software is open source4 and we are hopeful that others will
want to use it and continue its development.

Acknowledgment

The authors drew extensively from the work of the brilliant UC Berkeley graduate
students in the LoCal and Software Defined Buildings research groups, namely
Michael Andersen, Stephen Dawson-Haggerty, Andrew Krioukov, Jorge Ortiz, and
Jay Taneja, as well as others. This work was supported by the National Science
Foundation and the Department of Energy.

References

Blumstein, Carl. (2011). Energy Efficiency, Information Technology, and the
Electricity System. Proc. 2011 Conference on Energy Efficiency, European Council for an
Energy-Efficient Economy, Paris, France.

Dawson-Haggerty, Stephen, Krioukov, Andrew, Taneja, Jay, Karandikar, Sagar,
Fierro, Gabe, Kitaev, Nikita, and Culler, David. (2013). BOSS: Building Operating

4 https://github.com/SoftwareDefinedBuildings/XBOS

Open Software-Architecture for Building Monitoring and Control

 8

System Services. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation.

Fierro, Gabe et al. (2015) XBOS: An Extensible Building Operating System, in
Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient
Built Environments (to appear) November 3-4, Seoul, South Korea

