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ABSTRACT 

In Building Automation Systems contextual information about 
sensors is frequently missing or hard-coded in the control code. 
Retrieving this data is time consuming and error-prone, but 
necessary to write any type of control application. Automating 
metadata acquisition is a new and active area of research. 
Methods to infer metadata from sensor labels or from recorded 
data have been previously proposed. However, these methods are 
ineffective in uncovering the association between HVAC 
components. In fact, measured variables (pressures, temperatures, 
flows, valve positions) have slow and attenuated responses to 
changes in input variables, thus impairing the efficacy of 
correlation methods. In addition, sensor readings are frequently 
constrained between physical limits and kept around setpoints by 
nested control loops. For this reason, pure statistical methods fail 
to capture the differences between sensor streams and are unable 
to classify them. In this article, we propose a new method for 
discovering functional relationships between Air Handling Units 
and Variable-Air-Volume Boxes from sensor data. The method 
utilizes perturbations of subsystem variables, while guaranteeing 
that the building zones remain within comfort boundaries. When 
applied to an existing building, our proposed method reveals 
correct associations in ~80% of the cases, and outperforms other 
methods.  

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Process 
Control Systems  

General Terms 
Algorithms, Measurement, Performance, Experimentation, 
Verification, Design. 

Keywords 
Correlation, Clustering, Perturbation, System Identification, 
Modeling. 

1. INTRODUCTION AND MOTIVATION  
Energy efficiency in the buildings sector offers great potential for 
cost-effective emissions reductions. We spend ~90% of our time 
in buildings, consume ~75% of total electricity, representing 
nearly half of our primary energy consumption, and generating 
45% of our CO2 emissions [1]. In large commercial buildings, 
traditional digital control systems regulate the majority of the 
energy use, particularly HVAC systems, which we focus on here, 

and lighting. These large sensor deployments are cyber-physical 
systems with thousands nodes.  
Software applications have been recently developed to optimize 
energy use, improve comfort, and identify faults for these systems 
[8, 9, 10, 11, 12]. For all these applications to be implemented, 
detailed information about sensors’ context is required. 
Unfortunately, such information is very difficult to obtain, 
because it is either embedded in the building automation system 
(BAS) or non-existent. Current efforts in automatic metadata 
acquisition include two different strategies: extrapolating 
metadata from labels (e.g., BACnet point names), and inferring 
them from sensor readings. Recent work has just started exploring 
the latter approach. Fontugne et al. [2] proposed a method to 
correlate inter-device user patterns by extracting traces of 
occupancy from electrical energy use. Koc et al. [3] compared 
correlation methods to infer spatial relationships between 
discharge and zone temperature sensors in different rooms of a 
building. Rajagopal et al. [6] developed a method for using LED 
frequency modulation and smartphones cameras to establish a 
relationship between fixture and occupant location. 
Despite these efforts, many issues remain unresolved. In 
particular, we set out to devise a method for inferring functional 
relationships between HVAC components, as lack of this 
information precludes the adoption of common energy efficiency 
strategies (e.g., resets). This paper explores an instance of this 
problem (on purpose this is a very difficult case to solve). The 
example is specific to a particular building, but technique and 
considerations are generalizable to many other buildings. Indeed, 
the majority of the US large commercial buildings have some 
variation of these systems installed. 

2. TESTBED  
We analyze data from a large commercial building with 3 chillers, 
4 air-handling units (AHU) and 179 thermal zones. A variable air 
volume (VAV) box modulates the airflow from the AHU to each 
zone. One AHU is associated to multiple VAVs. VAV modulation 
is achieved through a combination of two control actions: 
adjusting the air damper position (DMP) and regulating the local 
reheat valve (RVP) (Figure 1). The temperature in each zone 
(Tzone) is influenced also by the supply air temperature (Tsa) and 
flow (FLWsa) coming from the AHU. All these points are 
monitored and recorded by the BAS, and represent the datasets 
used here. In addition, the room temperature is impacted by 
uncontrolled variables, such as weather (Toat is the outdoor air 
temperature), internal gains, and other thermal gains. This 
configuration is typical of a large number of buildings. The 
association between AHU and VAV is not stored in the BAS; 
however, for the purpose of the experiment, ground truth 
association was collected to verify the results of the proposed 
method. This paper explores different methods to discover the 
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functional relationship (i.e., the association) between the VAV 
box and the AHU that provides air to it. 

 
Figure 1. AHU and VAV configuration. On the right, 
the VAV control logic is represented. Tzone is kept 
around the Tsetpoint by the control outputs u=[DMP, 
RVP]. Tzone is also influenced by parameters controlled 
by the AHU (v=[Tsa, FLWsa]AHU)  and external 
disturbances w=[Toat, internal gains …]. 

3. RESULTS WITH EXISTING METHODS  
Techniques commonly employed to detect relationships in data 
streams include: correlation of raw data [3], correlation of 
transformed data [2], principal component analysis (PCA) and 
clustering [4,7], statistical process control [12], and model-based 
system identification (i.e., building a model by looking for the 
best fit from a single VAV and alternative AHU data). 
Preliminary analysis of the building dataset tested conventional 
correlation methods to find relationships between AHU and the 
corresponding VAV boxes. Table 1 shows an example of these 
coefficients. Results show very poor correlation. Desired values 
inside the bold boxes should be higher, in absolute value, than the 
corresponding values in the other rows. This method is able to 
correctly classify only 38% of the zones (Table 3). The same test 
was repeated with data resampled at 5 min, 15 min, and daily, 
yielding similar results.  

Table 1. Correlation matrix (showing raw data from 
two AHU and two VAV boxes). Data from May 28 to 
July 14 2015, resampled at daily rate. 

 Example VAVAHU2 Example VAVAHU4 
 Tzone DMP RVP Tzone DMP RVP 

AHU 2 Tsa -0.06 0.06 0.11 -0.11 0.24 0.29 
AHU 4 Tsa -0.20 -0.19 -0.06 -0.04 -0.01 0.02 

In contrast to prior research monitoring energy consumption [2], 
the variables measured in this test are pressures, temperatures, 
flows and actuator positions, which show delayed and attenuated 
responses to changes in input variables, thus reducing correlation. 
Further, AHU and VAV boxes/zones are physically distant 
(differently from [3]), and variables in the latter are significantly 
influenced by additional measured and non-measured disturbances 
(Figure 1). For this reason, sensor values show a small signal to 
noise ratio. In addition, sensor readings are frequently constrained 
between physical limits (e.g., max damper position) and kept 
around setpoints by nested control loops. Also, cross-talk between 
systems (i.e., zones might influence each other) and similarity in 
the way different AHU are controlled (setpoints and daily 
behavior are similar) make correlation of raw data ineffective. 

Next, we constructed feature vectors for the data of each VAV. 
Features included were: Tzone, DMP, RVP, Tsetpoint, flow setpoint 
(FWS), day of the week, time of the day. PCA was applied to 
these feature vectors to identify the two principal components and 

correlate them to the Tsa. Unfortunately, results of this analysis are 
not very different from what obtained with raw data (Table 2 and 
3), yielding to 32% correct classifications.  

Table 2. Correlation matrix (showing 2 principal 
components of VAV data and two AHU). Data from 
May 28 to July 14 2015. 

 Example VAVAHU2 Example VAVAHU4 
Eig1 Eig2 Eig1 Eig2 

AHU 2 Tsa 0.12 0.12 0.20 0.09 
AHU 4 Tsa -0.12 -0.15 -0.04 -0.05 

Finally, we tested a completely different and novel approach 
involving system identification (SID) techniques, which are used 
in control engineering to find a mathematical relationship (model) 
between input and output variables in an observed system [5]. A 
physics-inspired black-box dynamical model was constructed to 
predict Tzone, based on the available sensor data:  

𝑇!"#$,! = 𝛽!  𝑇!"#$,!!! + 𝐹𝐿𝑊! ∙ 𝛽!!   𝑅𝑉𝑃!

!!!

!

+ 𝛽!  𝐹𝐿𝑊! ∙ 𝑇!",!!"#

+ 𝛽! ∙ 𝑇!"#,! 

where variable names are defined above, 𝛽!    are the statistical 
coefficients, and t stands for time. The equation is in the form of 
an autoregressive time series model with exogenous inputs and 
interactive effects (some variables are multiplied). The term with 
the sum represents the lag in the effect of the reheat valve. The 
model is based on detailed physical knowledge of the heat transfer 
processes in VAV boxes. Note that all the variables in this 
equation belong to the VAV with the exception of (𝑇!",!!"#), that 
represents the supply air temperature controlled by the AHU at 
time t. The idea is that using the 𝑇!",!!"# from the AHU actually 
connected to each VAV would improve the model fit. Both linear 
regression and lasso [13] were used to fit the model over 15-min 
resampled data. While the model fit the data very well (R2=76-
95% depending on the zone), it failed to capture the difference in 
AHU. Plugging in different 𝑇!",!!"#did not change the fit of the 
model as we had expected. Classification results are presented in 
Table 3. We reasoned that the main cause of this is that the 
majority of the variation in the output variable  𝑇!"#$,! is captured 
by the first term of the model (zone temperature at the previous 
time step) and the remaining 𝛽!   coefficients are relatively small. 
With the calculated coefficients, the input variable 𝑇!",!!"# would 
have to change by more than 20 °F to produce measurable effects 
in the output variable. Such large temperature differential never 
occurs spontaneously in our recorded data, and if artificially 
produced would seriously compromise occupants’ comfort. 
Nevertheless, this prompted us to explore the idea of actively 
perturbing the building to measure system response. 

4. NEW METHODOLOGY  
The concept underlying the proposed methodology is that by 
arbitrarily perturbing an AHU we can generate a distinguishable 
signal in the connected VAV boxes. In practice, by changing 
dramatically the supply air temperature in an AHU (input), the 
VAV box will respond by changing some controlled variables 
(reheat and damper position) to maintain the temperature setpoint. 
However, if despite saturation of actuators (damper or reheat 
valve completely open or close) the system cannot keep up with 
zone cooling/heating load, the zone temperature (Tzone) will be 
affected and change. The AHU supply air temperature was chosen
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Table 3. Percentage of correctly classified VAVs using different methods 

 Random Correlation Raw Correlation PCA SID Perturbation + 
Voting 

Correctly classified VAVs 25% 38% 32% 32% 79% 
 
over the AHU flow rate as it is practically easier to tune. Also 
significantly perturbing flow rates might provide insufficient 
ventilation or damage the ducts due to high pressure. During the 
experiment, care was taken in ensuring that the perturbation had 
no impact on occupant comfort. To do so, while creating an 
overall large perturbation, the temperature setpoint for the supply 
air in the AHU was set one day to 52 °F (cold mode) and the 
following day to 60 °F (hot mode), whereby the normal setpoint 
for a week-day was 57 °F. Since thermal systems have a 
significant response lag, the perturbation was sustained for a full 
day in each mode. To reduce the noise in the data, knowing that 
VAV variables have little correlation with time of the day (result 
found while using the other methods), we resampled the data in 
daily intervals. Average daily values for RVP, DAM and Tzone are 
still meaningful indicator of system behavior. 
The algorithm took the following steps: 
1. Perturb one AHU at the time for two consecutive weekdays, 

one day in cold mode and one day in hot mode.  
2. Collect data for each VAV for the following sensors: RVP, 

Tzone, DAM.  
3. Re-sample data to obtain daily averages. 
4. For each daily average, label the data as belonging to a 

baseline weekday (WD), cold day, or hot day, for each 
perturbed AHU (e.g., ColdAHU2 means cold period for AHU 
2). Each VAV data stream will have periods for all AHU 
perturbations. 

5. Standardize each stream of data to have mean = 0 and 
standard deviation = 1. 

6. For each VAV and each period combine data into average 
daily vectors of the form [RVP, DAM, Tzone]. 

7. Filter out vector elements that show a response value with 
opposite sign compared to physical intuition (e.g., a cold 
perturbation that reduced reheat). 

8. For each VAV and each couple of AHU perturbations, 
calculate the Euclidian distance between hot and cold 
vectors. At the end of this step, each zone will have a metric 
for each AHU perturbation difference (hot – cold). 

9. For each VAV take a vote to select the AHU whose 
perturbation has a highest metric (produced a larger 
difference in sensor vectors). The AHU selected with this 
method is expected to be associated with that VAV box. 

One important intuition here was that evaluating a metric for each 
VAV box across all the perturbation periods (voting) would 
provide better results than assigning the zone to an AHU for each 
perturbation (independent classification), as discussed below.  

5. RESULTS AND DISCUSSION 
The proposed methodology was applied to the building explored 
with the other methods. The method correctly identified the 
relationship between VAV box and AHU in 79% of the cases. 

5.1 Misclassifications 
There were three main groups of zones that were incorrectly 
classified: (1) VAVs that showed no response to any perturbation, 
(2) VAVs that had an unexpected behavior, such as counter-
intuitive responses to perturbations, (3) VAVs that responded 
more strongly to the perturbation of the ‘wrong’ AHU. 

As an example of group (1), zone 308 (not shown here for 
brevity) presents a very tight distribution of variables, as DAM is 
at its minimum, and daily average RVP changes very little during 
all the periods. Further analysis of this case reveals very frequent 
oscillations (about 20 cycles per day) of RVP ranging between 0% 
and 40%. It is very likely that the control loop is out of tune for 
this zone. This might be the reason why the perturbation has no 
visible effect on the data.  

Among the zone exhibiting counterintuitive responses to 
perturbations (group (2)), zone 461 shows a very wide distribution 
of points (Figure 2). The zone seems subjected to large 
unmeasured disturbances. Some baseline weekdays reach max 
RVP (~100%), while others use only a fraction of reheat (20-
35%). These unknown factors probably had a larger effect 
compared to the perturbation, causing the zone to be 
misclassified. 

5.2 Independent classification vs. voting 
Adopting a voting system compared to scoring each perturbation 
individually increases accuracy and precision (with one 
exception), as illustrated in Table 4. In addition, the classification 
of each AHU individually, based on its corresponding 
perturbation (Pi is the perturbation to AHUi), requires defining a 
threshold to compare the calculated metric to. Choosing the right 
threshold is challenging and hard to generalize. In Figure 3 each 
line represents a VAV box sorted by ground-truth AHU, while 
each column represents a perturbation of an AHU. The color in 
each cell is shaded proportionally to the value of the calculated 
metric, normalized by column. Darker colors represent higher 
metric values that correspond to stronger relationships between 
the VAV box and the perturbed AHU. It is clear from the figure 
that each perturbation produces responses in multiple VAV boxes, 
some of which are not associated with the correct AHU. Choosing 
a threshold corresponds to choosing a minimum shade of grey that 
triggers the association with the AHU currently perturbed. 
Further, Figure 3 shows that perturbations 2 and 4 (in column) 
require a very different threshold to correctly classify the 
corresponding VAVs. In contrast, Figure 4 illustrates the clearer 
heat map generated with voting. Dark areas are more clearly 
defined, and it is also visually easier to identify which VAV boxes 
are associated to the AHUs. Furthermore, if a zone is classified in 
different ways under separate perturbations (e.g., belonging to two 
AHUs) then the classification conflict needs to be resolved. When 
a voting system is adopted, a zone is classified univocally.  

Table 4. Comparison of accuracy / precision of the 
voting method and the independent scoring method for 
each AHU 
 

Accuracy/ 
Precision  

Independent classification Voting 
Threshold  

= 0 
Threshold  

= 1 SD Max Value 

AHU 1 39% / 31% 78% / 60 % 85% / 77% 
AHU 2 35% / 16% 92% / 63% 94% / 77% 
AHU 3 22% / 17% 83% / 48% 92% / 69 % 
AHU 4 48% / 45% 88% / 85% 86% / 85% 

 



 

 

Figure 2. Zone 461 incorrectly classified by the 
new methodology. Results projected in 2D. 

Figure 3. Treating each 
perturbation as a stand-alone 

experiment. 

Figure 4. Advantages of using a 
voting method. 

6. CONCLUSION AND FUTURE WORK 
In this paper we present a novel algorithm to infer relationships 
between HVAC components of large commercial buildings. We 
show that due to the characteristics of the data (response lags, 
nested control loops, tight variable boundaries) other common 
techniques are not effective in this context. The new algorithm 
utilizes perturbations of AHU variables and guarantees that the 
building zones remain within comfort. The method was applied to 
an existing building and could identify the relationship correctly 
in 79% of the cases. There are three main directions of research 
we would like to explore in the future. First, we would like to 
explore how our technique generalizes to other buildings, where 
zones may have different sensors, setpoints, and control loops. 
Second, we would like to explore whether we can discover 
relationships between subsystems like AHUs and VAV boxes 
without having to introduce a large perturbation to the AHU. We 
may be able to utilize milder perturbations like daily occupant 
cycles, and techniques from statistical process control to infer the 
same relationships. Finally, a useful future direction of research is 
to quantify the amount of cross-talk between zones. The heat 
exchange between zones with common doors, passageways, etc. 
introduces errors into any single-zone heat exchange analysis, and 
its identification and quantification could lead to more efficient 
and better designed control loops.  
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