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Explores the trade-off between water use and energy savings, using three different 
water alternatives—by employing energy and cost analyses of small-scale evapora-
tive cooling technologies.

Water Energy Index (WEI)
Experimental data collected from retrofitted 4-ton York RTU air cooled condensing unit with flow rate 
of 0.13 cubic meter per second per kW cooling used to calculate WEI. WEI includes: volume of water for 
evaporation and an additional 15% maintenance water:
WEI=WL /EL × 1.15

DOES EVAPORATIVE COOLING MAKE SENSE IN ARID 

CLIMATES? 

I. Summarizes measured energy savings and coincident water consumption for two small-scale 

types of “modern” evaporative cooling technologies: evaporative pre-coolers for packaged 

vapor-compression equipment and residential evaporative condensers. 

II. Explores the trade-off between water use and energy savings, using three different water 

resources (tap water, rain water, desalination water) employing energy and cost analysis.  

Water Energy Index (WEI) 

The experimental data collected from retrofitted 4 ton York RTU air cooled condensing unit with 

flow rate of 0.13 cubic meter per second per kW cooling used to calculate WEI.  

 

Include both the volume of water for evaporation and additional 15% maintenance water: 

𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 = 𝐖𝐖𝐖𝐖𝐋𝐋𝐋𝐋
𝐖𝐖𝐖𝐖𝐋𝐋𝐋𝐋

 × 1.15 

where,  

EL �
kWhElectricity saving

kWhCooling
� = � 1

COPBase
� − � 1

COPPre−cool
�  Normalized Eletctricity Savings        

   

WL[ L
kWhCooling

] = EE × (WSat. −  Win) × Qc × ρair
ρwater

× hr
3600 s
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Energy Base Analysis
Desalination produces 80-280 liters of potable water for 1 kWh consumed

•	Evaporative cooling consumes 9-40 liters of water per 1 kWh saved

•	Equivalent to getting back 2-30 kWh for investing 1 kWh (electricity multiplier)

•	Desalinization can operate at night and evaporative cooling reduces peak demand 

during the day

Economic Assessment
Desalination rate $1.65 per 1000 liters produced

•	Electricity costs of $0.08-$0.37 per kWh 

•	$1 in desalination water yields $1.20-$25 in electricity cost savings, depending upon 

the technology employed and the local cost of electricity

Demand Response with Evaporative Pre-Coolers
•	Evaporative pre-coolers provide the largest impact at peak demand times

•	Water use efficiency is highest at peak times

•	Planning project to test evaporative pre-cooler response time



PROJECT RESULTS:
Multi-Tenant Light Commercial—Modeling
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Parameter Baseline Best

RTU Efficiency COP = 2.9 COP = 6

Evaporative Pre-Cooler No Yes

HVAC Economizer No  Yes

Cool Roof No  Yes

Windows
SHGC = 0.38
U-Factor = 4.088

SHGC = 0.25
U-Factor = 3.236

Skylights None
SHGC = 0.8 
U-Factor = 3.24

Lighting
Linear fluorescent T8 lighting
LPD (retail) = 1.14 W/sf

LED 
LPD = 0.87 W/sf

Daylight Harvesting Control  
System

None Continuous  dimming 

•	The MTLC prototype building was modeled 

with 18 variable parameters 

•	The parametric analyses consisted of  

approximately  500,000 simulations

The parameters that were common among the top 10 performing configurations 

saves 27% electricity annually over the baseline configuration.
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PROJECT RESULTS:
A New Termination Control Method for a Clothes Drying 
Process in a Clothes Dryer
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•	DOE estimates that energy savings 

between 4 – 62% are possible with 

improved dryer controls

•	Achieving 20% savings in natural gas 

dryers with 10% market penetration would 

save 6 million therms annually in California 

•	WCEC testing has shown that typical 

natural gas dryers run with inlet 

temperatures above 300°F and a 

significant amount of the air bypasses  

the burner

Researchers at Hong Kong Polytechnic 
University (Ah Bing Ng, Shiming Deng, 2008) 
have demonstrated control scheme proof of 
concept in a laboratory setup
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PROJECT RESULTS:
Performance Evaluation of a Thermal Storage Solution
Using ice to store thermal potential
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•	WCEC tested a thermal storage solution in our environmental control chamber, 

and used the results to suggest design improvements and build a predictive  

performance model.

•	The predictive model was used to estimate performance for a next generation 

thermal storage solution

•	Successful completion of the tests is an example of the breadth of WCEC’s  

expertise in energy efficient technologies
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PROJECT RESULTS:
Performance Evaluation of a Thermal Storage Solution
Using ice to store thermal potential
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PROJECT RESULTS:
High Performance Waste Heat Recuperators for  
Heat Recovery Cycles
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Motivation and Challenges
•	Waste heat recovery in ships can lead 

to enhanced efficiency and longer 

times between refueling. 

•	There has been recent interest in sCO2 

cycles for power generation and waste 

heat recovery. 

•	Challenge is in designing a reliable  

recuperator, 

	  •	 Cyclic operation

	  •	 Corrosion

	  •	 Low pressure drop designs needed 

Problem Statement
Design a low pressure drop recuperator 

for sCO2 waste heat recovery cycle while 

running in system pressure as high as 200 

bar (3000 psi) for a large naval ship. 

Benefit to US Navy
Novel recuperator designs for high pres-

sure sCO2 waste heat recovery cycle using 

Additive Manufacturing:

•		 High effectiveness recuperator

•		 Compact

•		 Low pressure drop on exhaust side

•		 No weld/braze joints in AM- potentially 

more reliable

SCO2
TurbineCompressor

Cooling

Heating
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Low temperature  exhaust gases to atmosphere

Variation of recuperator length and pressure drop of ex-
haust gases with sCO2 exit temperature based on the 
model developed for designing the recuperator

Hot exhaust gases from Generator


