HVAC Trajectories toward Zero

Jon McHugh, McHugh Energy
at WCEC Affiliate Forum
Western Cooling Efficiency Center
Davis, CA May 7, 2013
jon@mchughenergy.com
CPUC Big Bold EE Strategies

Big Bold Energy Efficiency Strategies

Commercial New Construction
- All new commercial construction in California will be zero net energy by 2030.

Residential / Small Commercial HVAC
- Heating, Ventilation, and Air Conditioning (HVAC) industry will be reshaped.

Residential New Construction
- All new residential construction in California will be zero net energy by 2020.

Low-Income Energy Efficiency
- All eligible homes energy-efficient by 2020.
Residential ZNE-Ready Planning

Scope for 2020 residential ZNE goal is single family and low rise multi-family
Definition of ZNE includes plug loads, thus appliances are very important

See “Code Driven Portfolios.” ACEEE 2012 Summer Study
Nonresidential Buildings Policy Timeline

2008 Title 24 in Effect

2013 Adopted

Warehouses 49 kBtu/sf*

2016 Adopted

Schools 92 kBtu/sf

2019 Adopted

Small Office – 145 Retail - 149 College - 160 Lodging – 167

2021

Large Office - 203 Health - 276

2022 Adopted

Ref Warehouse – 211

Food store - 447 Restaurant - 622

2023

2025 Adopted

2028 Adopted

2029

All New Construction ZNE

50% Existing Building Stock ZNE

T24 Part 6 – Energy Efficiency Standards

Executive Order B-18-12

AB 1109

25% indoor & outdoor lighting reduction

50% of New State Buildings ZNE

All New State Buildings ZNE

*Source energy kBtu/sf from CEUS CA Commercial End-Use Survey

Begin with End in Mind.
Innovation: HVAC and Lighting Technology Trajectories

Appliance Standards

SEER 10
Incand PAR 100 W

SEER 13
Halogen PAR 90 W

SEER?
Required Economizer + FDD Econ

SEER??
IEER??
Charge FDD + Multi-speed

Building Standards

VRF VFD Fan
Evap Cond

CMH PAR 38 W
HIR PAR 75 W

LED PAR 20 W
LED PAR 10 W

California Climate Zones

Coast: CZ’s 1, 3, 5, 6, 7
Near Coast CZ’s 2, 4, 8, 9
Inland Empire CZ 10
Central Valley CZ 11-13
Desert CZ 14 & 15
Mountains CZ 16
2013 Title Residential HVAC

- HERS verified duct sealing in all CZs. (§ 150.0(m)11)
- Mandatory fan power and airflow testing OR Return duct design (Residential HVAC Quality Installation Improvements). (§150.0(m)13)
- Prescriptive refrigerant testing and HERS verification
- Duct insulation raised from R-4.2 to R-6.0 in climate zones 6, 7, and 8. (§150.1(c)9)
- Whole house fan or Smart Vents and Night Breeze as alternatives in CZs 8-14. (§150.1(c)12)
- Occupant Controlled Smart Thermostat as a tradeoff against the solar ready zone
2013 Title 24 Nonresidential Economizers

- Prescriptive threshold for economizers lowered
 - Moved from 75,000 Btuh down to 54,000 Btuh (4.5 tons) and > 1,800 cfm of airflow
 - Removed exemptions related to computer equipment and telecommunications

- Mandatory Fault Detection and Diagnostics (FDD)
 - All air-cooled unitary direct-expansion units with an economizer and
 - Mechanical cooling capacity >= 54,000 Btuh
 - Applies to:
 - Packaged DX rooftops
 - Split-systems
 - Heat pumps
 - Variable refrigerant flow systems
Each system listed in Table 140.4-B shall be designed to vary the airflow rate as a function of actual load.

<table>
<thead>
<tr>
<th>Cooling System Type</th>
<th>Fan Motor Size</th>
<th>Cooling Capacity</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Expansion</td>
<td>any</td>
<td>>= 110,000 Btuh</td>
<td>Jan 1, 2012</td>
</tr>
<tr>
<td>Direct Expansion</td>
<td>any</td>
<td>> 65,000 Btuh</td>
<td>Jan 1, 2015</td>
</tr>
<tr>
<td>Chilled Water</td>
<td>> ¼ hp</td>
<td>any</td>
<td>Jan 1, 2012</td>
</tr>
<tr>
<td>Evaporative</td>
<td>> ¼ hp</td>
<td>any</td>
<td>Jan 1, 2012</td>
</tr>
</tbody>
</table>
Prescriptive Requirements for Computer Rooms §140.9(a)

- New process measure – similar to ASHRAE 90.1-2010 requirements
- Air or water side economizers required for:
 - Individual computer rooms > 5 tons cooling
 - New systems in existing computer room > 50 tons cooling
 - New system in a new room in existing bldg > 20 tons
- Simultaneous heating and cooling prohibited
- Heating water to humidify air not allowed (non-adiabatic)
 - Use evaporative media or ultrasonic humidification (adiabatic)
- Fan system power ≤ 27 W/kBtuh at design conditions
- Fan speed control for DX > 5 tons and all chilled water systems
 - Fan power ≤ 50% design fan power at 66% of design fan speed.
 - Simple payback < 5yr
- Containment prevent recirculation (return from mixing with supply)
2013 Title-24 Occupancy Controls

- Occupancy sensors allowed as a control option for demand control ventilation
- May reduce the ventilation rate to zero
- One sensor per room
- Must do one hour pre-purge prior to normal occupancy
- Must shut off outside air within 30 minutes of vacancy
- If single zone system, must also cycle off the fan
Occupancy Sensing Thermostats

- Mandatory Occupancy sensor based HVAC control in:
 - Multipurpose rooms < 1000 sq ft
 - Classrooms > 750 sq ft
 - Conference rooms > 750 sq ft

- Must automatically setup the cooling set point by 2°F or more and setback the heating temperature set point by 2°F or more and

- ...Automatically reset the minimum required ventilation rate to zero or turn the supply fan off when the zone is unoccupied

- Hotel/Motel Guestrooms
 - Card key control or occupancy sensing controls to control:
 - thermostat,
 - lights and
 - half of the receptacles.
Demand Responsive Communicating Thermostatic Controls

- All unitary heating and/or cooling systems including heat pumps that are not controlled by a central energy management control system (EMCS) shall have an Overrideable Communicating Thermostat (OCST)
2016 Key Residential HVAC and Envelope product development

- Residential construction patterns that bring ducts out of unconditioned space and address code requirements concerning venting attics to prevent moisture
- Construction methods that allow thicker exterior insulation while addressing moisture, durability and cost
- Construction and design practices that increase wall thickness and decrease thermal bridging
- Training and construction practices that are able to meet QII specs without taking significantly more time.
- Fault Detection and Diagnostic (FDD) Equipment that can measure refrigerant charge and non-condensibles.
 - FDD already required for nonres economizers
Greater Comfort and Energy Savings via Improved Building Envelope

- IAQ must be addressed to tighten envelope and properly ventilate
 - Bring ducts and sealed combustion equipment inside conditioned space
 - Feasible, reliable super-insulation

- Compressors less comfort home
 - Envelope and building simulation
Coastal Compressorless Comfort Home

- Reduce loads enough so that AC is not needed
 - Added envelope costs are partially offset by reduced HVAC system costs. Not prohibiting AC but not required
 - Justifies more insulation and better windows in mild CZs
 - Justifies indirect evap cooling in hot climate zones
 - Similar to basis of European Passive House Standard
 - Minimum LCC
 - No Forced Air System

- Capitalized Costs (€/m²)
- Specific energy requirement for heating (kWh/m² per year)

[Graph showing savings and investment in Passive House]
No Ducts in UnConditioned Space Impacts HVAC equipment

- **Ducts in conditioned space or ductless HVAC**
 - Includes conditioned attics, scissor truss, other methods of adding conditioned plenum space, and the use of ductless systems. Different methods of addressing heating in the conditioned space include sealed combustion furnaces, combined water heating and space heating and heat pumps.

- **Simulation of ducts in conditioned space group of measures**
 - conditioned attic space, ducts in conditioned spaces, ductless systems, sealed combustion, combined heating and water heating and how does it impact efficiency of condensing water heaters.

- **VRF and CV mini-split**
 - Develop methodology and rating data needed to provide accurate model of water heating for VRF.
Res Ventilation

- Controlled supply mechanical ventilation
 - Evaluate the costs, the energy benefits and the air quality benefits from replacing exhaust based ventilation with supply based ventilation
- Heat recovery ventilation
 - Evaluate whether heat recovery ventilators are cost-effective in the more extreme climate zones and develop a proposal if so. This would replace the other mechanical ventilation requirements.
Res HVAC Measures

- Dual path - higher HVAC efficiency in alternative path
 - include higher HVAC efficiency in alternate path

- FDD/CID refrigerant charge/condensables (2016?)
 - Propose a requirement for FDD that would verify proper refrigerant charge, lack of condensables in the system and proper airflow.

- Evaporative cooling baseline hot/dry CZs
 - Evaluate and develop and evaporative cooling code baseline for homes in hot/dry climate zones
Avoiding Preemption: Multiple Path Energy Codes

Prescriptive Paths

Standard Path(s)

Photovoltaics or Large Impact Efficiency Measure

Alternate Path(s)

Reduced or no PV required or other Eff Measure

Performance (Software) Approach

Photovoltaics or Large Impact Efficiency Measure

Minimum Federal Efficiency Equipment

At least one standard path for every alternate path with higher efficiencies

Dual Path Approach and BEARS

- Dual path approach PV vs. high eff equipment
 - PV in base case: trade-off with equip eff: HVAC, water heating, refrigeration
- PV model offsets consumption
 - Performance method base case with PV and method for trade-offs
- BEARS (Building Energy Asset Rating) System) whole building rating model including deemed plug loads.
 - Evaluate plug load data from a number of sources including CEUS and COMNET and incorporate into ACM so that performance runs also generates a BEARS design rating
 - ZNE: BEARS = 0
Nonres HVAC measures

- **Low W/sf HVAC systems**
 - Limit connected HVAC connected load. Don't double count interlocked loads. Consider a fan efficiency requirement or W/cfm requirement

- **Heat recovery**
 - Heat recovery with thresholds by cfm of O/A and climate zone

- **ACM - Base Case HVAC rule set**
 - Performance rule set without exceptions (VAV reheat?), max W/sf, validated EPlus algorithms, base case and proposed case when AC not used, comfort model. Economizer simulation model for two speed AC.

- **ACM - Improved and validated VRF simulation**
 - Rigorous method of incorporating VRF test data into simulation that results in accurate estimate of energy impact.
 - ACM - VAV w/reheat, integration with DCV, chilled beam and DCV. Validate and improve Eplus simulation of nonresidential HVAC simulation types. Compare to eQUEST and rationalize or fix the discrepancies
Advanced HVAC

- Improved Natural Ventilation and displacement ventilation simulation
 - Evaluate Eplus natural ventilation model and make recommendations for the ACM. Evaluate the feasibility and cost-effectiveness of a natural ventilation and displacement ventilation base case by climate zone.

- Radiant model including comfort
 - Evaluate Eplus radiant heating/cooling model and make recommendations for the ACM. Update Eplus model if necessary. Adjust setpoint temperatures based on ASHRAE 55 and operant temperature.
Process - Fume Hoods & Computer Rooms

- Lab fume hoods, Occupancy sensing control of sash
 - Evaluate the feasibility and cost-effectiveness of an automatic control of vent hood sashes.
 - Similar to automatic doors at stores
 - Requires VAV fume hood exhaust system

- Lab HVAC measures
 - reset general room airflow rate and setpoint when unoccupied after hours,
 - max W/cfm at peak air flow,
 - no simultaneous heating and cooling (dual duct, chilled beam, 4PFC etc.),
 - *Internal gains in labs can vary widely over time and they become the “rogue” zone*
 - sizing calculated,
 - exhaust duct sealing.

- Computer rooms
 - Economizers on smaller equipment
 - Measures applied to smaller computer rooms and data centers
Opportunities ahead

- Aggressive goals for 2020, 2025 and 2030
- $2.6 Billion for school energy upgrades over the next 5 years (2013-2018) Prop 39
- Significant changes to 2013 Title 24
 - Significant niches in eff HVAC and controls
 - Similar changes from ASHRAE 90.1 and IECC
- New opportunities for 2016 codes
 - Emphasis on individual measures
 - Incremental cost
 - Energy savings
 - Feasibility
 - Enforceability (ratings etc.)