WCEC Year-In-Review Celebrating 10 Years

Mark Modera Western Cooling Efficiency Center May 15th, 2017

THANK YOU TO OUR AFFILIATES & PARTNERS

WCEC Affiliates Forum: Celebrating 10 Years

Today's Program

» 9:00-10:15am: WCEC - Celebrating 10 Years Mark Modera, Director, Western Cooling Efficiency Center » 10:15-11:30am: What Is the Future of Upstream HVAC Programs? Paul Thomas, Senior Energy Programs Advisor, San Diego Gas and Electric Paul Kyllo, Director, CLEAResult Richard Lord, Senior Fellow, Carrier Lunch: Flexible Tour and Poster Session » 11:30-1:00pm: » 1:00-2:30pm: Future of Refrigerants Chun-Cheng Piao, VP of Technology Alliances, Daikin Steve Kujak, Director Next Generation Refrigerant Research, Trane Glenn Gallagher, Air Pollution Specialist, California Air Resources Board Next Steps in Evaporative Cooling: Energy+ Modeling Tools » 2:30-3:00pm: Jonathan Woolley, Associate Engineer, WCEC Break » 3:00-3:15pm: **Emerging Technologies Program Update** » 3:15-4:15pm: Jerine Ahmed, Senior Engineer, Southern California Edison David Hungerford, Demand Response and Behavior Research, California Energy Commission Complimentary Dinner– Bicycle Hall of Fame, Davis, CA » 5:30-8:00pm:

10 Years of History at WCEC

Associate Director Vinod Narayanan joins WCEC

WCEC graduates first PhD Student Zhijun Liu

2014

2015

WCEC expands outreach mission to include video production

First 10 Years: Student Development

» Created two new courses at UC Davis

- ECI 125: Building Energy Performance (Civil/Environmental Engineering)
- EME 164: Introduction to HVAC (Mechanical Engineering)
- » Employed over 50 undergraduate students from around the world
 - UC Davis
 - France
 - Germany
 - India
 - Brazil

» Six graduate students have earned degrees at WCEC

- 3 Ph.D.
- Zhijun (China), Marco (Italy), Nasim (Iran)
- 3 Master's Mayra, Kris, Nelson

First 10 Years: Publications

»17 Academic Publications

- Evaporative Cooling (2 papers)
- Swimming Pools as Heat Sinks (2 papers)
- Water-Energy Nexus (2 papers)
- Precooling Test Protocol (1) paper)
- Ground Source Heat Pumps (1) paper)
- Aerosols (1 paper)
- Thermostats/behavior (6) papers)
- Duct Léakage (2 papers)

First 10 Years: Patents

»Roll-up Radiant Mat »Aerosol Sealing of Enclosures »Aerosol Sealing of Pipelines »Tracer Gas Measurement Tool »Dryer Controls »System Performance for Heat Pumps

First 10 Years: Notable Expertise

- » Climate appropriate cooling technologies
 - Evaporative cooling of all sorts
 - Water characterization and management
- » Laboratory testing
 - Unique ability to produce hot dry climates
 - Testing of overall system performance in the lab
- » Field testing
- » Aerosol sealing
 - Buildings and Natural Gas Infrastructure
- »Energy modeling
 - Energy Plus for Hybrid Cooling, NZE/MTLC Optimization
- » Behavioral research
- »Policymaking (ASHRAE, T-24)

First 10 Years: Field Test Sites

Field Studies Across California

- Building shell sealing
- Duct Sealing and Air Balancing
- **Evaporative Cooling Technologies**
- Gas Engine Heat Pump
- Ground Source Heat Pump
- Polymer Bead Laundry
- Radiant Cooling
- Smart Thermostats
- Solar water heating
- Swimming Pools as Heat Sinks
- Variable Refrigerent Flow Systems
- Variable Speed RTU
- Ventilation/Economizer Retrofit
- Ventilation in Schools

Field Studies Across the U.S.

Quantico, VA Fort Bragg, NC Mechanicsburg, PA Minneapolis, MN Queens, NY

Field Studies Around the World Dubai Tokyo

CURRENT Project Highlights

- » Climate Appropriate Cooling
 - Evaporative Pre-Coolers SCE
 - Cow Cooling CEC (Animal Science Department)
- » A/C Heat Rejection Swimming Pools CEC and SDG&E
 - Residential ⇒ Hotels
- » K-12 Schools (School of Public Health)
 - Energy-Efficient HVAC and IAQ
- » Indoor Farming Xcel (Plant Science)
- » Aerosols
 - Production New Construction DOE
 - Non-Residential Buildings DOD
 - IoT Leakage Diagnostic NIST
- » Outreach and Training
 - Title-24 Training Videos CEC

POOL

Evaporative Pre-Coolers for Vapor Compression Systems

- » What is an Evaporative Pre-Cooler?
 - Cools Outdoor Air Entering Air Conditioner Condensers by Evaporative Cooling
 - Air Conditioner power draw decreases, and cooling capacity increases
- » SCE-Supported Effort at WCEC (PG&E and SMUD supporting) parallel efforts)
 - Field Testing of Performance
 - Development of ASHRAE Test Standard (for rating alternative products)
 - Proposed Standard 212 went out for Public Review on April 28th
- » Potential for Dispatchable Pre-Coolers (WCEC for SCE)
 - No disruption to customer experience
 - Minimal water-use impact
 - Lab testing completed
 - Planning field test on Walmart stores this summer

Dispatchable Evaporative Pre-Coolers - Lab Testing

Dispatchable Evaporative Pre-Coolers – Lab Testing

Response Time

Dispatchable Evaporative Pre-Coolers – Lab Testing

Water Efficiency and Off-Time Impacts

Electricity and Water Performance

Best Impact and Water Efficiency at Peak Conditions

Dry Precooler ▲ Baseline

120 Outdoor Air Dry Bulb Temperature (°F)

Dispatchable Evaporative Pre-Coolers – Field Testing

Field Test in Southern California

- » Existing Installation of Dual Evaporative Pre-Coolers (5 20 ton RTUs)
- » Additional Planned Installation of Condenser Air Pre-coolers on Six RTUs (total 50 tons)
- » Controls will dispatch entire rooftop of pre-coolers
- » WCEC will characterize transient demand impacts

- » Funded by California Energy Commission's EPIC Program
- » Develop optimal approach to cool dairy cows under California summer climate conditions
- » Objectives:
 - Use significantly less energy and water than current dairy cooling systems
 - Demonstrate, on a pilot scale, two innovative approaches to cooling dairy cattle
- » Project Team:
 - UC Davis Western Cooling Efficiency Center (led by PI Narayanan)
 - UC Davis Department of Animal Science (led by Cassandra Tucker)
 - Integrated Comfort (Equipment Manufacturer)
 - Jim Bruer (Dairy Consultant)

» Average CA cow produces over 8 gallons of

» Production generates a lot of metabolic heat

What Happens If Heat Load is Not Managed

- ↑ Body temperature
- ↓ Milk production
- ↓ Reproduction/fertility
- ↑ Disease risk
- ↑ Mortality

BASELINE APPROACH

» Sprinklers over feed bunk, milking parlor
» Fans in bedding area, milking parlor
» In top 3 water uses at a dairy

Energy Costs for a California Dairy

Energy costs at California's dairies peak in summer

Cow Cooling with UC Davis Animal Science Proposed Solution

(B) TARGETED CONVECTION COOLING

STATUS

» Currently Commissioning Test on Cows at UC **Davis Campus**

» Planning Field Test in Tulare

» Goal is 30-40% Energy and 70-80% Water Savings

Swimming Pools as Heat Sinks

Initial Model Validation (2009)

Residential Demonstration (2010)

- » Demonstration at Wyndham Hotel in San Diego (SDG&E)
 - Supplement pool heating with heat rejection from A/C
- » Measure reduction in natural gas use to maintain pool temperature » Measure A/C performance improvement over air-side heat rejection

Commercial Demonstration (2017)

Project Goal

Assess Current Ventilation/IAQ Performance and Potential Improvement for HVAC **Retrofits in Schools**

Objectives:

- Characterize HVAC Retrofits Completed between 2013-2016 (including satisfaction surveys)
- Deploy and Test Energy Efficient HVAC Retrofits
- Use Simulations to Investigate Implications of Experimental Findings

Project Team:

- UC Davis Western Cooling Efficiency Center (including behavioral research)
- UC Davis Department of Public Health Sciences
- UC Davis Energy Efficiency Center
- Lawrence Berkeley National Laboratory

Technology partners

• Trane, Geary Pacific/Bard, IQ Air

- Higher rates reduce CO₂ levels
- Higher rates increase Heating and Cooling
- Higher rates increase outdoor pollutant entry (particles and ozone)
- OA filtration increases fan power
- **Preliminary Phase-I Results**
- Five school districts tested to date

Preliminary Phase-I Results

- Two Types of Equipment
 - RTUs and Wall-Mounted units
 - One per classroom

Vertical Wall Mount Units

Roof Top Unit (RTU)

Preliminary Results

- CO₂ Tests on Classrooms with HVAC Retrofits Completed between 2013-2016
- Large Range of Results

Ventilation Produced by Infiltration

- Blower door tests on individual classrooms
- Need to know if classrooms are receiving ventilation that is not passing through the HVAC system

		CFM@50
	Room #	Pa
Temecula	5	1575
Temecula	37	1212
Willows	202	4178
Rio	F1	747
Rio	F2	747
Rio	F3	777
Rio	F4	1290
Rio	F5	894
Rio	F6	853
Rio	F7	789
Rio	F8	916
Rio	F9	684
Rio	F10	720

Grades Taught

Teacher Survey: Early Analyses

Number of teachers

Teacher Survey: 87.5% of teachers reported having a thermostat

100% of classrooms had a thermostat (or controller of some kind)

Cooling Season

Heating Season

How satisfied are you with the temperature in your classroom?

Teacher Survey: Satisfaction with classroom temperature

AFFILIATES' FORUM

Teacher Survey: Sufficient fresh air from HVAC alone?

57%

I have never been under the impression there is "fresh" air coming into my room unless I have the door open

Before when we had the old HVAC the room was fresh and easy to breath. Now the students complain...and I have to agree.

Does your classroom get enough fresh air from HVAC alone?

Yes, but without turning it on, it gets very stuffy in the classroom. 43% I keep it at 70 degrees because if the air is not circulating constantly it becomes stuffy in the classroom Yes No

Effective Energy-Efficient School Ventilation Teacher Survey: Satisfaction with classroom air

Indoor Farming: Dehumidification

- » High dehumidification requirements due to plant transpiration
- » Lab study forecasted 30-65% energy savings relative to traditional dehumidification and cooling

» 100% of the water removed from the air can be re-used to water the plants

» Exploring additional work and collaboration

Indoor Farming: Dehumidification

Traditional Dehumidification System

Latent load from watering and transpiration versus annual energy expended for dehumidification and reconditioning of air

MSP Technology's Dehumidification System

First 10 Years: Field Sites for Aerosol Sealing

» Aerosol Sealing Sites – Single Family

- Davis, CA (1 demo)
- Clovis, CA (6 demos)
- Stockton, CA (4 demos)
- Lancaster, CA (1 demo)
- » Aerosol Sealing Sites Multifamily
 - Davis, CA (3 demos)
 - Minneapolis, MN (27 demos)
 - Queens, NY (4 demos)
 - Quantico, VA (4 demos)
 - Fort Bragg, NC (3 demos)
 - Mechanicsburg, PA (8 demos)

Aerosol Envelope Sealing (DOE Building America) - New Residential » Integrate aerosol sealing into new home construction » Test multiple options (i.e. before insulation, after drywall)

- » Determine manual sealing efforts that can be eliminated
- » Assess sealing performance, cost, scheduling issues

Manual sealing details

Aerosol Envelope Sealing – Past Year

» First non-res installations including:

- 17 demonstrations on military bases
- Quantico 5,000 ft² grade school
- Mechanicsburg 8,400 ft² industrial building
- Mechanicsburg 22,000 ft² Officer's Club
- Some buildings required supplemental manual sealing
- » First applications by a subcontractor
- » First applications by licensee

Aerosol Envelope Sealing (DoD ESTCP)

» Two Sealing events » Sealed >80% of sealable leakage » 65% leakage reduction after ~4 h of injection

Building Leakage Diagnosis using IoT

- Uses changes in building pressure to quantify duct and envelope leakage
- Clear change in $\Delta P_{envelope}$ with fan operation
- Excellent day to day consistency: 0-5% standard deviation
- NIST project as consultant to XCSpec UC Davis/XCSpec proposal submitted

2016 Residential Building Energy Efficiency Standards - HVAC

- » Funded by CEC
- » Nine **Residential** HVAC Standards Courses ⇒ two hours of content
- » Commercial HVAC Standards Videos Underway
- » Example: <u>Explanation of</u> **Intermittent Ventilation**

(i) www.energy.ca.gov/title24/orc/hvac/2016_hvac.html#resvid ☆

» Course 1: Mandatory, Prescriptive, and Performance Requirements - Understanding the Differences

- » Course 3: Mandatory Measures for Heating and Cooling Systems
- » Course 5: Mandatory Measures for Air Distribution Systems

2

3

EDUCATION TECHNICAL AGREMENTS

Thank You for All Your Support RESEARCH **Any Questions?** SERVICE wcec.ucdavis.edu **TECHNOLOGY TOPICS** ECTOR RESEARCH BEHAVIORAL RESEARCH YSTEMS INTEGRATION DEMAND CONTROLS SIDE MANAGEMENT ORAT TECHNOLOGIES RADIANT COOLING **MULTI-TENNANT** LIGHT COMMERCIAL

