BUILDING A BETTER ENERGY EFFICIENT FUTURE

SDG&E's Energy Efficiency Business Plan WCEC Affiliates Forum

May 2017

Who We Serve

- 4,000+ employees serve clean, reliable energy to 3.5 million customers in San Diego and Southern Orange counties
- We safely operate 2,475 miles of electric transmission lines and 234 miles of natural gas transmission lines
- We innovate to serve our customers with clean energy through 1.5 million smart meters, employee inventions that make our customers' lives better and by offering customer choices that give them energy choice

We improve lives and communities by building the cleanest, safest and most reliable energy company in America.

Our Changing EE Landscape

Energy Efficiency Past	Energy Efficiency Today	
3 Year Program Cycles	10 Year Rolling Portfolio	
Stakeholder input via regulatory comments & protests	Ongoing stakeholder engagement via CAEECC	
Individual rebates for "widgets"	Whole Building / Whole Home approach	
Utilities designed and implemented programs	Utilities design portfolio and determine need - 3 rd Parties design and implement programs	
Statewide consistent programs and local programs available	All upstream and midstream programs now administered by a single PA for the entire state	

Overview of Business Plan Filing

The plan articulates goals and budgets through 2025:

	Short-Term 2018-2020	Mid-Term 2021-2023	Long-Term 2024-2025
Annual Budget	\$116,456,309	\$116,456,309	\$116,456,309
GWh Goal	236 – 238	223 – 214	4 214
MW Goal	44 – 45	43	44
Therm Goal (MM)	3.9 - 4.0	3.7 – 3.8	3.8

New CPUC requirements for statewide program management and outsourcing:

- At least 60% of the total budget allocated to programs designed and delivered by third parties by 2020
- At least 25% of the total budget devoted to statewide programs that will be administered by one lead IOU

Statewide Program Administration

- CPUC Decision 16-08-019
 - "All upstream and midstream programs . . . shall be delivered statewide . . ."
 - Additionally, "at least four downstream programs to be piloted on a statewide basis"
- SDG&E proposed as lead Program Administrator for:
 - HVAC Residential and Commercial Upstream/Midstream
 - Residential HVAC Quality Installation and Quality Maintenance (QI/QM)

Statewide Upstream/Midstream HVAC

- SDG&E is not the Statewide PA until and unless confirmed in CPUC approval
- Final CPUC Decision not expected sooner than late 2017
- Existing robust statewide efforts will likely remain in effect until Statewide PA program takes effect
- Statewide PA program will very likely be designed and delivered by a third party

Highlights from SDG&E's Business Plan

- Upstream highlights:
 - Work further upstream with manufacturers and industry professionals to identify greater savings opportunities
 - Establish/maintain regional collaborations to increase market power and be better positioned for market transformation
- Residential QI/QM highlights:
 - Ensure HVAC measures are cost-effective, save energy and lower peak demand
 - Assist industry with developing a clear value proposition for a profitable QI/QM business
 - Promote increasing Customer awareness of the value of QI/QM

Thank you!

Paul D. Thomas HVAC Strategy Lead 858-636-3931 office pthomas@semprautilities.com

Appendix

Business Plan Guidance

- A template was provided in D.15.10.028
- Five main sectors were required for inclusion in the business plan
 - Residential
 - Commercial
 - Industrial
 - Agricultural
 - Public
- A cross-cutting chapter was also required
 - Workforce Education & Training
 - Codes & Standards
 - Emerging Technology
 - Finance

Business Plans and Commission Guidance

Business plans were filed with the CPUC on January 17th to describe our strategy for supporting the state's energy efficiency goals and seek funding approval

Business Plan vs. Implementation Plan

Business Plans

- High level, strategic documents that articulate a path for achieving objectives set forth by the CPUC for the 10 year rolling portfolio
- Six total sectors
- Portfolio and sector level metrics, budgets and milestones
- Includes strategies not programs
- Implementation Plans
 - Details of programs that will implement the BP Strategies
 - Goes through the stakeholder process (CAEECC)
 - Replaces the old Program Implementation Plans (PIPs)
 - Will not be filed but posted to the CPUC website

The Past, Present, and Future of **RESIDENTIAL ENERGY EFFICIENCY**

ERIZATION

PAST & PRESENT

45%

Single family owner

FUTURE

One of SDG&E's largest sectors

- 36% of total electric consumption
- 32% of EE spending
- 24% of electric EE savings

Potential savings for most end-uses will decline from 57 GWh in 2017 to 36 GWh in 2018 due to code changes

Plug loads in California are forecasted to grow to 77% of residential consumption by 2024

Home management systems

will become a logical technology to make customers' lives simpler and improve customer satisfaction

Self-generation is expected to reduce peak demand by 380 MW by 2024

Number of customers with **Solar generation and electric vehicles** will continue to grow

Electric vehicles are expected

to increase electricity consumption by ~1,200 GWh by 2024

1.2 million customers

1.3 million accounts

7% of customers

participated in 2013-2015 downstream EE programs

66% of electric consumption is comprised of plug loads

26%

Multifamily renter

8%

Multifamily

owner

21% Single family

renter

Demand convenience

Desire for solar and electric vehicle continues to grow

RESIDENTIAL ENERGY EFFICIENCY

DELIVERY APPROACH

PAST & PRESENT

FUTURE

Program offerings were **primarily driven by rebates** for dozens of individual measures

· 0	•	

and multiple rebate tiers

Individual rebates have been reduced to five measures

Recent focus has been on the behavioral program and the direct install program

There has been a continued expansion of behavioral programs

due to consistent proven results and potential

Leverage data from behavioral programs to provide customized solutions and assistance

Single pathway and integration of programs

Empower customers to use energy intelligently by providing data

Self-serve options to increase program participation

Personalized recommendations

Expansion of behavioral programs

Leverage a platform to drive customers through the adoption curve to achieve zero net energy

ut the chapter.

The Past Present, and Future of **COMMERCIAL ENERGY EFFICIENCY**

Ν

PAST & PRESENT

FUTURE

Consistent and reliable results for years

SDG&E's largest sector is electric-centric

- 43% of total consumption
- 45% of EE spending
- 42% of EE savings

Two segments make up the majority of customers.

Most customers occupy leased space.

55% Wholesale, Retail & Office

30% Hospitality & Services

Small customers, small businesses

85% customers under 20 kW

Lighting makes up over half

of the electric savings and brings in 4x as much savings as whole building

Move from simple lighting retrofits to comprehensive **whole building approach**

Automation will become more prevalent

Increased focus on energy efficiency in legislation

Interval data will inform decisions

Whole building will bring in as much savings as lighting

Whole building and lighting will make up close to **75% of the total savings potential**

COMMERCIAL ENERGY EFFICIENCY

DELIVERY APPROACH

The Past, Present, and Future of **PUBLIC ENERGY EFFICIENCY**

Relatively small sector

- 12% of total kWh consumption
- 18% of EE spending
- 8% of EE kWh savings

Majority of customers are small

77% accounts under 20 kW

Unique sector attributes

Taxpayer funded Public decisionmaking and budgeting process

Political mandates **Climate Action Plans** create focus on energy efficiency

ZNE goals suggest flat, or possibly lower, future consumption

Responsible for complying

with increased political mandates, often unfunded

Non-EE benefits like comfort and productivity will drive deeper EE penetration

PUBLIC ENERGY EFFICIENCY

DELIVERY APPROACH

PAST & PRESENT

No focus on the public sector as a unique customer segment

Part of commercial sector

Participated in bundled non-residential programs

Lacked customization to unique needs and challenges-minimal focus on leveraging influence over private sector

Savings from traditional non-residential, _ single end-uses such as lighting and HVAC

Limited number of comprehensive projects

Misaligned program deadlines and public project implementation

timelines restrict participation

Missed opportunities for engaging public leaders as EE champions

Missed opportunities to drive additional private sector savings

FUTURE

New public sector represents an opportunity to modify existing and develop new innovative offerings. Address the sector's unique needs and challenges

Facilitate best practice sharing

and equip leaders with knowledge and tools to make informed energy efficiency decisions

Garner public leader support of energy efficiency

- Eliminate barriers to participate
- Tailor offerings to address unique needs
- Develop public sector action plan
- Drive success in climate action planning
- Enable projects through financial solutions
- Modify finance products

Enhanced marketing, education and outreach and reach code development will encourage participation and progress beyond existing codes and standards in private sector

ed on this figure are included throughout the chapter.

The Past, Present, and Future of INDUSTRIAL ENERGY EFFICIENCY

Relatively small sector:

- 8% of electric consumption
- 5% of gas consumption
- 3% of EE spending

ngs
• 4% of gas savings

Primarily small customers

No one-size fits all solution

- Diverse end-uses
- Complex Systems
- Proprietary Processes

Profitability directs decision-making

Safety, environmental and waste compliance are priorities

CEC estimates indicate **little to no growth** in this sector through 2024

Environmental regulations for this sector continue to increase

Motors & Drives represent the largest potential for this sector. Twice as much savings from O&M compared to new equipment.

Wastewater treatment

facilities could be a prominent segment in the future

INDUSTRIAL ENERGY EFFICIENCY

DELIVERY APPROACH

Citations for data presented on this figure are included throughout the chapter.

The Past, Present, and Future of **AGRICULTURAL ENERGY EFFICIENCY**

MARKET CHARACTERIZATION

A very challenging market

- Expensive land
- Poor soil
- Expensive and limited water

Many small farms

65% under 10 acres

2% of total electric consumption

San Diego County has more farms than any other county in the U.S.

Indoor agricultural load could grow

Indoor agriculture may grow with cannabis legalization

Water costs in San Diego are highest in the State

Water will continue to be a driving factor in decision-making for agricultural customers

Water scarcity will create competition within rural areas

Potential for gas savings is very small

The Past, Present, and Future of AGRICULTURAL ENERGY EFFICIENCY DFILVERY APPROACH **PAST & PRESENT FUTURE** No specific agricultural offering, only general non-residential offering Separate and focused approach that allows for specialization to the market Deemed Rebates Calculated Incentives Direct Install • Audits Plan to outsource • On-Bill Financing to attract expertise in area Lack of customization to unique sector needs, barriers and challenges Strategic Energy Management for Lack of collaboration with stakeholders agriculture can accommodate SDG&E's agricultural sector and industry partners

Citations for data presented on this figure are included throughout the chapter.

WORKFORCE EDUCATION & TRAINING ENERGY EFFICIENCY

MARKET CHARACTERIZATION

WORKFORCE EDUCATION & TRAINING ENERGY EFFICIENCY

DELIVERY APPROACH

